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ABSTRACT: In this study, the effects of both lamination scheme and 

boundary conditions on the natural frequencies of free vibration of laminated 

composite beams were investigated. The problem is analyzed and solved using 

the energy approach which is formulated by a finite element model. Lamination 

schemes for symmetric and non-symmetric laminated beams were studied. Six 

boundary conditions are considered; clamped _free (CF), hinged _hinged (HH), 

clamped _clamped (CC), hinged _clamped (HC), hinged _free (HF), free _free 

(FF). Each beam has either movable ends or immovable ends. It is found that 

both symmetrically and anti-symmetrically laminated beams of similar size and 

end conditions have equal natural frequencies which, generally, decrease as the 

angle of orientation increases. Also, It is found that the more constrained beams 

have the higher values of natural frequencies of transverse vibration. However, 

the free-free and hinged-free beams are found to have the highest frequencies of 

transverse vibration amongst all beams although they look less constrained. 

This behavior is due to the fact that the first mode of the two beams is equal 

zero (rigid body motion), and replaced by the second mode to be the 

fundamental mode. The values of the natural frequencies of longitudinal modes 

are found to be the same for all beams with movable ends since they are 

generated by longitudinal movements only. But for immovable ends, the 

clamped-free and hinged-free beams have equal frequencies in longitudinal 

vibration, and those of the other beams are also the same. 
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1 INTRODUCTION 
Laminar composites are those having alternating layers of material bonded 

together in some manner and include thin coatings, thicker protective surfaces, 

claddings, bimetallic, laminates, and sandwiches. Laminated composite beams 

are increasingly being used in many engineering applications in the fields of 
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mechanical and civil engineering, transportation vehicles, marine, aviation and 

aerospace.  

The papers, which are presented here as references, address the problem of 

the free vibration of laminated composite beams. A theoretical analysis of the 

vibration of composite beams with solid cross sections was also presented by 

Teoh and Huang [1], Chandrashekara et al. [2], Abramovich [3]. In those 

analyses, the equations of motion were based on a Timoshenko beam model 

(shear deformation considered). Numerical results showed the effect of the 

shear deformation and fiber orientation on the natural frequencies. Again, 

Abramovich and Livshits [4] presented exact solutions for the free vibration of 

non-symmetrically laminated cross-ply composite beams. Marur and Kant [5] 

and [6], and McCarthy et al [7] applied higher order shear deformation theories 

to solve the problem of the free vibration of composite beams. 

The first-order shear deformation theory was used by Teboub and Hajela [8] 

to analyze the free vibration of generally layered composite beams. Hodges et 

al. [9] presented two different methods, which were simple analytical method 

and finite element method for the prediction of the natural frequencies and 

mode shapes of composite beams. In addition to the references mentioned 

above, references [10, 11, and 12] applied different techniques of the finite 

element method for the same problem. 

 

2 MATHEMATICAL FORMULATIONS 
The time-dependent axial and transverse displacements fields are: 
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Where, u  and w  are the axial and transverse displacements at the mid-plane, 
z  is the perpendicular distance from the mid-plane to the layer plane,   

is the 

rotation of a plane after deformation, and t  is the time. The strain- displacement 

relations are:                               
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Where the subscripts have the same meanings as those used in 3-D elasticity 

formulation, i.e. 1  is the axial or longitudinal strain, and 5  is the through-

thickness shear strain. The stress-strain relationship of a lamina can be shown 

as: 
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The elastic constants  11C  and  55C  for orthotropic beams can be expressed 

as: 
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Where; 
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By applying the energy approach for the beam element shown in Fig. (2), the 

strain energy stored is given by: 
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Where, bdxdzdV  , and the subscript, e, means one element. 

Also, the kinetic energy is found as follows; 
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The degrees of freedom at each node are; the axial displacement u, deflection w, 

and rotation  , and can be written in terms of their nodal values as follows: 
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Where, iN  is shape function and assumed as a second-order polynomial for a 

three-noded element as: 
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The constants ia , ib , and ic  can be computed for each element from the 

following data: 
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Eqns. (7), and (8) leads to the final form of the non-dimensional element 

stiffness and inertia matrices [K]e ,and [M]e respectively. The individual 

element stiffness and inertia matrices [K]e and [M]e must be linked together or 

assembled to characterize the unified behavior of the entire beam. Therefore, 

The global stiffness and inertia matrices are given respectively by, 
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Where, N is the total number of beam elements. 

The solution can be obtained after the incorporation of boundary conditions 

which will modify both stiffness and inertia matrices. Thus, the non-

dimensionalized natural frequencies can be determined from the relation: 

    021



IKM                                         (13) 

Where, I is an identity matrix, and   is the non-dimensional natural 

frequencies, which can be computed by computing the square root of the 

eigenvalues of the matrix    KM
1

 using a suitable computer program (Here 

MATLAB was used). 

 

3 MATERIAL 
AS/3501-6 graphite-epoxy material was used for all numerical results because of 

its wide applications in modern industries. The mechanical properties of this 

material are tabulated in Table (1).  

 

Table 1.  Mechanical Properties of AS/3501-6 graphite-epoxy material 
Property Magnitude 

E1 145 GN/m2 

E2 9.6 GN/m2 

G12 4.1 GN/m2 

G13 4.1 GN/m2 

G23 3.4 GN/m2 

Poisson’s ratio  (ν)  0.3 

Density (ρ)  1520 kg/m3 
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4 METHOD VALIDITY 
In order to check the validity of the present method, some comparisons were 

performed. Table (2) and Table (3) show comparisons with the results of some 

past works. For the hinged-hinged beam, a percentage difference of less than 

0.16% was recorded for the fundamental frequency, and less than 0.54% for 

both fixed-free and fixed-fixed beams. This difference was observed to increase 

as the mode order increases (less than 1.4%) for the seventh mode for all beams 

considered.   

 

Table 2.  Non-dimensional fundamental frequencies [ 2

1

2. hEL   ] of 

symmetric [  ///   ] angle-ply beams (L/h = 15) 

            (deg.) 

Beam  

Type 

0 15 30 45 60 75 90 

HH 
present 2.654 2.509 2.102 1.535 1.010 0.759 0.730 

Ref. [2] 2.656 2.510 2.103 1.536 1.012 0.761 0.732 

CC 
Present 4.839 4.655 4.092 3.182 2.1996 1.683 1.622 

Ref. [2] 4.848 4.663 4.098 3.184 2.1984 1.681 1.620 

HF 
present 4.090 3.870 3.251 2.382 1.5716 1.181 1.136 

Ref. [2] 4.093 3.872 3.253 2.384 1.5738 1.184 1.138 

FF 
Present 5.889 5.574 4.687 3.438 2.2702 1.707 1.642 

Ref. [2] 5.892 5.577 4.689 3.440 2.2730 1.710 1.645 

CF 
present 0.981 0.924 0.767 0.554 0.3625 0.271 0.261 

Ref. [2] 0.982 0.924 0.767 0.555 0.3631 0.272 0.261 

CH 
Present 3.725 3.555 3.054 2.301 1.5502 1.174 1.130 

Ref. [2] 3.730 3.559 3.057 2.303 1.5511 1.175 1.131 

 

Table 3.  Non-dimensional frequencies [ 2

1

2. hEL   ] of symmetric      

[0/ 90/ 90/ 0] cross-ply beams (L/h = 10) 

 

Mode No. 

Hinged-hinged 

(Immovable) 

Fixed-free 

(Immovable) 

Fixed-fixed 

(Immovable) 

Present Ref. [4] Present Ref. [4] Present Ref. [4] 

1 2.3157 2.3194 0.8866 0.8819 3.6855 3.7576 

2 6.9813 7.0029 4.1062 4.0259 7.7244 7.8718 

3 12.004 12.037 8.9536 9.1085 12.381 12.573 

4 17.010 17.015 11.504* 12.193* 17.192 17.373 

5 22.015 21.907 13.924 14.080 22.119 22.200 

6 23.007* 23.007* 18.980 18.980 23.007* 23.007* 
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Mode No. 

Hinged-hinged 

(Immovable) 

Fixed-free 

(Immovable) 

Fixed-fixed 

(Immovable) 

Present Ref. [4] Present Ref. [4] Present Ref. [4] 

7 27.094 27.094 24.037 24.037 27.125 27.125 

(*)  Modes with predominance of longitudinal vibration 

 

5 NUMERICAL RESULTS 

5.1 Lamination Scheme: 
 

Table 4.  The first three non-dimensional modes of free vibration of symmetric 

  ///    laminated beams with immovable ends. L/h=10 

Angle  

   

Mode 

No. 
Beam type 

CF HH CC HC HF FF 

30o 

1 

2 

3 

0.7465 

3.7279 

8.4193 

1.9918 

6.4128 

11.4744 

3.4380 

7.4386 

12.7816 

2.7113 

6.9645 

11.7816 

3.0503 

7.9206 

13.1707 

4.3728 

9.5329 

14.9573 

60o 

1 

2 

3 

0.3596 

2.0893 

5.3017 

0.9943 

3.6853 

7.4807 

2.0601 

5.0523 

8.8047 

1.4899 

4.3780 

8.1620 

1.5370 

4.5879 

8.6142 

2.2088 

5.5663 

9.8029 

90o 

1 

2 

3 

0.2597 

1.5522 

4.0677 

0.7224 

2.7525 

5.7774 

1.5544 

3.9654 

7.1377 

1.1020 

3.3519 

6.4646 

1.1184 

3.4324 

6.6580 

1.6077 

4.1694 

7.5785 

 

 
Figure 1.  Clamped-free beam 

 

Table (4) shows that the values of non-dimensional natural frequencies of 

various beams generally decrease as the angle of orientation of fibers with 

respect to the longitudinal axis of the beam are increased.  
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Figure 2.  Hinged-hinged beam 
 

 
Figure 3.  Clamped-clamped beam 

 

Similar values of frequencies for symmetric   ///   laminated beams 

with immovable ends and aspect ratio of 10 are plotted against the angle of 

orientation for the range from 0 up to 90 degrees in Figure 1 to Figure 6. The 

influence of fiber orientation becomes more noticeable as the mode order 

increases, and significant variations of frequencies were observed up to an angle 

of approximately 70 degrees. Beyond this angle, the variations in the 

frequencies are very small.  

Increasing angle of orientation to more than 70 degrees leads to increase the 

coupling between bending and stretching effect, which causes the laminated 

beam to be stiffer, and thus the variation in natural frequencies decreases. In 

addition, the values of non-dimensional natural frequencies of the longitudinal 

modes of free vibration are observed to decrease as the angle of fibers 

orientation is increased. 
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Figure 4.  Hinged-clamped beam 

 
Figure 5.  Hinged-free beam 

 

 
Figure 6.  Hinged-free beam 
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5.2 Boundary conditions 
Table (5) shows the first ten modes of free vibration of cross-ply laminated 

composite beams with immovable ends (i.e. axial movement is restricted), while 

Table (6) shows those for movable ends. 

Generally, it is found that more constrained beams have high values of 

natural frequencies. However, the free-free and hinged-free beams are found to 

have the highest frequencies amongst all beams although they look less 

constrained. This behavior is due the fact that the first mode of the two beams is 

equal zero and replaced by the second mode. The fundamental mode shapes of 

both beams are straight lines, Figure 7, and this due to the rigid motion in this 

mode where there is no vibrating motion. 
 

Table 5.  Non-dimensional natural frequencies  2

1

4 hEL   of a 

symmetric cross-ply [90/-90/-90/90] laminated beam with immovable ends,  

(L/h = 10) 

Mode No. 
BEAM TYPE 

CF HH CC HC HF FF 

1 0.2597 0.7224 1.5544 1.1020 1.1184 1.6077 

2 1.5522 2.7525 3.9654 3.3519 3.4324 4.1694 

3 4.0539* 5.7774 7.1377 6.4646 4.0539* 7.5785 

4 4.0677 8.1077* 8.1077* 8.1077* 6.6580 8.1077* 

5 7.3503 9.4753 10.8006 10.1515 10.4868 11.5233 

6 11.1503 13.5995 14.7896 14.2085 12.1616* 15.7969 

7 12.1616* 16.2155* 16.2155* 16.2155* 14.6913 16.2155* 

8 15.2783 17.9847 18.9972 18.5027 19.1205 20.2606 

9 19.6134 22.5259 23.3543 22.9488 20.2694* 24.3234* 

10 20.2694* 24.3234* 24.3234* 24.3234* 23.6776 24.8245 

 (*)  Modes with predominance of longitudinal vibration 

 

 Table 6.  Non-dimensional natural frequencies  2

1

4 hEL   of a 

symmetric cross-ply [90/-90/-90/90] laminated beam with movable ends,  

(L/h = 10) 

Mode No. CF HH CC HC HF FF 

1 0.2597 0.7224 1.5544 1.1020 1.1184 1.6077 

2 1.5522 2.7525 3.9654 3.3519 3.4324 4.1694 

3 4.0677 5.7774 7.1377 6.4646 6.6580 7.5785 

4 7.3503 8.1077* 8.1077* 8.1077* 8.1077* 8.1077* 

5 8.1077* 9.4753 10.8006 10.1515 10.4868 11.5233 

6 11.1503 13.5995 14.7896 14.2085 14.6913 15.7969 
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Mode No. CF HH CC HC HF FF 

7 15.2783 16.2155* 16.2155* 16.2155* 16.2155* 16.2155* 

8 16.2155* 17.9847 18.9972 18.5027 19.1205 20.2606 

9 19.6134 22.5259 23.3543 22.9488 23.6776 24.3234* 

10 24.0758 24.3234* 24.3234* 24.3234* 24.3234* 24.8245 

(*)  Modes with predominance of longitudinal vibration 
 

 
Figure 7.  Transverse mode shapes of a symmetric of a free-free beam, L/h=10 

 

6 CONCLUSIONS  
The main conclusions are:   

1. Similar beams, which are either symmetrically laminated   ///   or 

anti-symmetrically laminated    /// , have equal natural 

frequencies, since the coefficients 11C and 55C  are equal for both cases (see 

Eqn. (5)). 

2. The natural frequencies of a laminated beam generally decrease as the fiber 

orientation angle increases. 

3. Increasing angle of orientation to more than 70 degrees leads to increase the 

coupling between bending and stretching effect, which causes the laminated 

beam to be stiffer, and thus the variation in natural frequencies decreases. 

4. The values of natural frequencies of the longitudinal modes of free vibration 

are observed to decrease as the angle of fibers orientation is increased. 

5. More restrained beams have high values of natural frequencies. 

6. The free-free and hinged-free beams are found to have the highest 

frequencies amongst all beams although they look less constrained. This 

behavior is due to the fact that the first mode of the two beams is equal zero 
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(rigid body motion), and replaced by the second mode to be the fundamental 

mode. 

7. The transverse modes are not affected by the longitudinal movements of the 

ends since these modes are generated by lateral movements only. 

8. The values of the natural frequencies of longitudinal modes are found to be 

the same for all beams with movable ends since they are generated by 

longitudinal movements only. 

9. Natural frequencies of the longitudinal vibration for the (CF) and (HF) 

beams are equal, and those of the other beams are also the same. This 

phenomenon occurs since both (CF) and (HF) beams with immovable ends 

are the same when restricted from executing longitudinal motion at the ends. 

Similarly, the rest of beams with immovable ends have the same longitudinal 

end conditions. 
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