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ABSTRACT: Finite element (FE) method is presented for the analysis of thin 

rectangular laminated composite decks plates under the biaxial action of in – 

plane compressive loading. The analysis uses the classical laminated plate 

theory (CLPT) which does not account for shear deformations. In this theory it 

is assumed that the laminate is in a state of plane stress, the individual lamina is 

linearly elastic, and there is perfect bonding between layers. The classical 

laminated plate theory (CLPT), which is an extension of the classical plate 

theory (CPT) assumes that normal to the mid – surface before deformation 

remains straight and normal to the mid – surface after deformation. Therefore, 

this theory is only adequate for buckling analysis of thin laminates. A Fortran 

program has been developed. New numerical results are generated for in – plane 

compressive biaxial buckling which serve to quantify the effects of lamination 

scheme on buckling loading. The results indicate that the symmetric laminate is 

stiffer than the anti – symmetric one. This phenomenon is caused by coupling 

between bending and stretching which lowers the buckling loads of symmetric 

laminate.  
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1   INTRODUCTION 
The objective of this research paper is to present a complete and up to date 

treatment of uniform cross section rectangular laminated decks plates on 

buckling. Finite element (FE) method is used for solving governing equations of 

thin laminated composite plates and their solution using classical laminated 

plate theory (CLPT). Plates are common structural elements of most 

engineering structures, including aerospace, automotive, and civil engineering 

structures, and their study from theoretical and experimental analyses points of 

view are fundamental to the understanding of the behavior of such structures. 
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The motivation that led to the carrying out of the present study has come from 

many years of studying classical laminated plate theory (CLPT) and its analysis 

by the finite element (FE) method, and also from the fact that there does not 

exist a publication that contains a detailed coverage of classical laminated plate 

theory and finite element method in one volume. The present study is an 

attempt to fulfill the need for a complete treatment of classical laminated theory 

of plates and its solution by a numerical solution. 

The material presented is intended to serve as a basis for a critical study of 

the fundamentals of elasticity and several branches of solid mechanics including 

advanced mechanics of materials, theories of plates, composite materials and 

numerical methods 

The problem of critical buckling loads of laminated composite plates is 

analyzed and solved using the energy method which is formulated by a finite 

element model. In that model, a four noded rectangular elements of a plate is 

considered. Each element has three degrees of freedom at each node. The 

degrees of freedom are the lateral displacement  , and the rotations   and   

about the   and   axes respectively. 

The effects of lamination scheme on the non – dimensional critical buckling 

loads of laminated composite plates are investigated. 

The material chosen has the following properties:  

                                                   . 

Several numerical methods could be used in this study, but the main ones are 

finite difference method (FDM), dynamic relaxation coupled with finite 

difference method (DR) as is shown in references [1] – [8], and finite element 

method (FEM). 

In the present work, a numerical method known as finite element method 

(FEM) is used. It is a numerical procedure for obtaining solutions to many of 

the problems encountered in engineering analysis. It has two primary 

subdivisions. The first utilizes discrete elements to obtain the joint 

displacements and member forces of a structural framework. The second uses 

the continuum elements to obtain approximate solutions to heat transfer, fluid 

mechanics, and solid mechanics problem. The formulation using the discrete 

element is referred to as matrix analysis of structures and yields results identical 

with the classical analysis of structural frameworks. The second approach is the 

true finite element method. It yields approximate values of the desired 

parameters at specific points called nodes. A general finite element computers 

program, however, is capable of solving both types of problems and the name" 

finite element method" is often used to denote both the discrete element and the 

continuum element formulations. 

The finite element method combines several mathematical concepts to 

produce a system of linear and non – linear equations. The number of equations 
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is usually very large, anywhere from 20 to 20,000 or more and requires the 

computational power of the digital computer. 

It is impossible to document the exact origin of the finite element method 

because the basic concepts have evolved over a period of 150 or more years. 

The method as we know it today is an outgrowth of several papers published in 

the 1950
th
 that extended the matrix analysis of structures to continuum bodies. 

The space exploration of the 1960
th
 provided money for basic research, which 

placed the method of a firm mathematical foundation and stimulated the 

development of multi – purpose computer programs that implemented the 

method. The design of airplanes, unmanned drones, missiles, space capsules, 

and the like, provided application areas. 

The finite element method (FEM) is a powerful numerical method, which is 

used as a computational technique for the solution of differential equations that 

arise in various fields of engineering and applied sciences. The finite element 

method is based on the concept that one can replace any continuum by an 

assemblage of simply shaped elements, called finite elements with well-defined 

force, displacement, and material relationships. While one may not be able to 

derive a closed – form solution for the continuum, one can derive approximate 

solutions for the element assemblage that replaces it. The approximate solutions 

or approximation functions are often constructed using ideas from interpolation 

theory, and hence they are also called interpolation functions. For more details 

refer to References [9], [10] and [11]. 

 

2     MATHEMATICAL FORMULATIONS  

2.1   Introduction 
The following assumptions were made in developing the mathematical 

formulations of laminated plates: 

1. All layers behave elastically; 

2. Displacements are small compared with the plate thickness; 

3. Perfect bonding exists between layers; 

4. The laminate is equivalent to a single anisotropic layer;  

5. The plate is flat and has a constant thickness;  

6. The plate buckles in a vacuum and all kinds of damping are neglected. 

Unlike homogeneous plates, where the coordinates are chosen solely based on 

the plate shape, coordinates for laminated plates should be chosen carefully. 

There are two main factors for the choice of the coordinate system. The first 

factor is the shape of the plate. Where rectangular plates will be best represented 

by the choice of rectangular (i.e. Cartesian) coordinates. It will be relatively 

easy to represent the boundaries of such plates with coordinates. The second 

factor is the fiber orientation or orthotropic. If the fibers are set straight within 

each lamina, then rectangular orthotropic would result. It is possible to set the 

fibers in a radial and circular fashion, which would result in circular orthotropic. 
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Indeed, the fibers can also be set in elliptical directions, which would result in 

elliptical orthotropic. 

The choice of the coordinate system is of critical importance for laminated 

plates. This is because plates with rectangular orthotropic could be set on 

rectangular, triangular, circular or other boundaries. Composite materials with 

rectangular orthotropic are the most popular, mainly because of their ease in 

design and manufacturing. The equations that follow are developed for 

materials with rectangular orthotropic. 

Figure 1 shows the geometry of a plate with rectangular orthotropic drawn in 

the Cartesian coordinates X, Y, and Z or 1, 2, and 3. The parameters used in 

such a plate are: (1) the length in the X-direction, (a); (2) the length in the Y – 

direction (i.e. breadth), (b); and (3) the length in the Z – direction (i.e. 

thickness), (h). 

 

 
Figure 1.  The geometry of a laminated composite plate 

 

2.2   Fundamental equations of elasticity 
Classical laminated plate theory (CLPT) is selected to formulate the problem. 

Consider a thin plate of length a, breadth b, and thickness h as shown in Figure 

2(a), subjected to in – plane loads Rx, Ry and Rxy as shown in Figure 2(b). The 

in – plane displacements           and           can be expressed in terms of 

the out of plane displacement         as shown below: 

The displacements are: 
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Where   ,    and    are mid – plane displacements in the direction of the  ,   

and   axes respectively;   is the perpendicular distance from mid – plane to the 

layer plane. 
 

 
( a ) 

 

 
( b ) 

Figure 2.  A plate showing dimensions and deformations 
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Figure 3.  Geometry of an n-layered laminate 

 
The plate shown in Figure 2(a) is constructed of an arbitrary number of 

orthotropic layers bonded together as in Figure 3. 

The strains are: 

 

   
   

  
  

   

   
 

 

 
 
  

  
 
 

                     

   
   

  
  

   

   
 

 

 
 
  

  
 
 

                      

  
   

  
 

   

  
   

   

    
  

  

  
  

  

  
 

 

 
  
 

  
 

                             

The virtual strains: 

 

    
 

  
     

  

   
   

  

  

 

  
                                               

    
 

  
     

  

   
   

  

  

 

  
                                                

   
 

  
    

 

  
      

  

    
   

  

  

 

  
   

 

  
  

  

  

 

 
  
 

  
 

            

The virtual strain energy: 

          
 

                                                     

But, 

     
Where, 
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If we neglect the in-plane displacements    and    and considering only the 

linear terms in the strain – displacement equations, we write: 

     

 

 

  

   

  

   

 
  

    

 

 

                                                   

 

3   THE NUMERICAL METHOD 
The finite element is used in this analysis as a numerical method to predict the 

buckling loads and shape modes of buckling of laminated rectangular plates 

[12] and [13]. In this method of analysis, four-noded type of elements is chosen. 

These elements are the four-noded bilinear rectangular elements of a plate. Each 

element has three degrees of freedom at each node. The degrees of freedom are 

the lateral displacement ( ), and the rotations ( ) and ( ) about the ( ) and ( ) 

axes respectively.  

The finite element method is formulated by the energy method. The 

numerical method can be summarized in the following procedures: 

1. The choice of the element and its shape functions. 

2. Formulation of finite element model by the energy approach to develop 

both element stiffness and differential matrices. 

3. Employment of the principles of non – dimensionality to convert the 

element matrices to their non – dimensional forms. 

4. Assembly of both element stiffness and differential matrices to obtain the 

corresponding global matrices. 

5. Introduction of boundary conditions as required for the plate edges. 

6. Suitable software can be used to solve the problem.  

For an   noded element, and 3 degrees of freedom at each node. 

Now express   in terms of the shape functions   (given in Appendix (B)) and 

noded displacements   , equation (6) can be written as: 

                                                                 
Where, 
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The stress-strain relation is: 

      

Where   are the material properties which could be written as follows: 

   

         

         

         

  

Where     are given in Appendix (A). 

                     
 

 

Where   denotes volume. 

                   
 

                                       

Where           
    

  

    

 
    is the bending stiffness, and    is the 

element stiffness matrix which could be written as follows:  

                                                              

The virtual work done by external forces can be expressed as follows: Refer to 

Figure 4. 

Denoting the nonlinear part of strain by     

                                                       

Where 
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Figure 4.  External forces acting on an element 

 
This can be written as: 
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Substitute                         

         

 
 
 
 
   

  
   

   
 
 
 
 

 
     

     
 

 
 
 
 
   

  
   

   
 
 
 
                                   

Therefore, equation (15) could be written in the following form: 

                                                                   

Where, 



24                                                                Effect of lamination scheme on buckling load  
 

    

 
 
 
 
   

  
   

   
 
 
 
 

 
     

     
 

 
 
 
 
   

  
   

   
 
 
 
       

   is the differential stiffness matrix known also as geometric stiffness matrix, 

initial stress matrix, and initial load matrix.  

The total energy:  

                                                              

Since     is an arbitrary displacement which is not zero, then 

                                                               

Now let us compute the elements stiffness and the differential matrices. 

                

    

 
 
 
 
 
 
 

    

   

    

   

 
    

     
 
 
 
 
 
 
 

 

         

         

         

 

 
 
 
 
 
 
 

    

   

    

   

 
    

     
 
 
 
 
 
 

       

The elements stiffness matrix can be expressed as follows: 

   
       

    

   
 
    

   
     

    

   

    

   
 

    

   

    

    

      
    

    

    

   
 

    

   

    

    
     

    

   

    

   

      
    

    

    

   

 
    

   

    

    
       

    

    

    

    
                                          

The elements differential stiffness matrix can be expressed as follows; 

   
      

   

  

   

  

     
   

  

   

  
 

   

  

   

  
      

   

  

   

  
                             

The integrals in equations (19) and (20) are given in Appendix (C). The shape 

local co-ordinate for a 4-noded element is shown below in Figure 5. 
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Figure 5.  A four noded element with local and global co–ordinates 

 
The shape functions for the 4-noded element expressed in global co-ordinates 

(   ) are as follows: 

                                

                                  

Where, 

  
  

  
           

  

  
 

The shape functions in local co – ordinates are as follows: 

                     
            

      
      

        
  

      
       

         
  

                     
            

      
      

        
  

      
       

         
  

The integrals of the shape functions in local co – ordinates are as follows: 
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The values of the integrals are converted from local co-ordinate (   ) to global 

co-ordinates. 

The integrals of the shape functions in global co-ordinates are as follows: 
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In the previous equations    
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 where   and   are the lengths of 

the plate along the   – and   – axis respectively.   and   are the number of 

elements in the   – and   – directions respectively.  

The elements of the stiffness matrix and the differential matrix can be 

written as follows: 

                                                       
        

   
                           

or in the non – dimensional form: 
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The transformed stiffnesses are as follows: 
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   and    are the elastic moduli in the direction of the fiber and the transverse 

directions respectively,   is the Poisson's ratio.    ,    , and     are the shear 

moduli in the   –    plane,   –    plane, and   –    plane respectively, and the 

subscripts 1 and 2 refer to the direction of fiber and the transverse direction 

respectively. 

   

4   EFFECT OF LAMINATION SCHEME 
In the present analysis the lamination scheme of plates is supposed to be 

symmetric, anti – symmetric and quasi – isotropic. 

Four lamination schemes were considered which are symmetric and anti –

symmetric cross – ply and angle – ply laminates. Table 1 gives a comparison 

between the non – dimensional buckling loads for all lamination schemes. The 

results are shown graphically in Figure 6. The thickness of all layers is assumed 

equal, the length to thickness ratio (      ), and the modulus ratio (      
 ). It is noticed from Table 1 and Figures 6, 7 and 8 that the values of the non – 

dimensional buckling loads for both symmetric and anti – symmetric lamination 

are slightly different, except for symmetric and anti – symmetric angle – ply 

laminates which are exactly the same. Because of this fact, the rest of the 

upcoming effects will be discussed for symmetric case only. The results 

indicate that the symmetric laminate is stiffer than the anti – symmetric one. 

This phenomenon is caused by coupling between bending and stretching which 

lowers the buckling loads of symmetric laminate. 
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Table 1.  The first five non-dimensional buckling loads           
  of 

symmetric cross-ply (0/ 90/ 90/ 0) and anti-symmetric cross – ply (0/ 90/ 0/ 90), 

and symmetric angle-ply (45/ -45/ -45/ 45) and anti-symmetric angle-ply (45/    

-45/ 45/ -45) laminated plates with        , and         

Lamination 

Scheme 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6972 2.1994 1.8225 

 2 1.2522 2.5842 2.0097 

0/ 90/ 90/ 0 3 2.4284 4.1609 2.7116 

 4 2.6907 4.7431 4.3034 

 5 2.7346 5.0168 4.4536 

 1 0.6973 2.2273 1.5591 

 2 1.9947 3.9687 2.3391 

0/ 90/ 0/ 90 3 1.9958 3.9732 3.7581 

 4 2.6912 4.7871 3.8290 

 5 4.3962 7.0544 4.5402 

 1 0.8729 1.9505 1.4756 

 2 1.6400 2.8534 2.1162 

45/-45/-45/45 3 2.3130 3.8941 3.3039 

 4 2.7100 4.3753 3.3068 

 5 3.5488 5.2694 4.4166 

 1 0.8729 2.2010 1.6554 

 2 1.6400 3.7616 2.5672 

45/-45/45/-45 3 2.3130 3.7654 3.4642 

 4 2.7100 5.6599 4.2174 

 5 3.5488 5.9540 4.8091 

 
Tables 2 and 3 show the buckling load of quasi – isotropic rectangular 

composite plate with       ,       and different modulus ratios (   
           ). The buckling load is highly influenced by its boundary 

conditions. The buckling load of the quasi – isotropic (0/+45/-45/90) 

rectangular composite plate with CC type boundary condition is 1.5 times 

higher than the buckling load of the composite plate with CS type boundary 

condition and more than 3 times of SS type boundary condition. 
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Figure 6.  Effect of lamination scheme for simply supported laminates 

 

 
Figure 7.  Effect of lamination scheme for clamped – clamped laminates 
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Figure 8.  Effect of lamination scheme for clamped – simply supported laminates 

 
Table 2.  The first three non-dimensional buckling loads of quasi-isotropic 

(0/+45/-45/90) laminated plates with a/h=20, and          

Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.4905 1.6878 1.1683 

2 1.4842 3.0187 1.7359 

3 1.4850 3.0229 2.7673 

  

Table 3. The first three non-dimensional buckling load of quasi-isotropic 

(0/+45/-45/90) laminated plates with a/h=20, and         

Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.7338 2.2255 1.5717 

2 2.0202 3.9506 2.3714 

3 2.0214 3.9549 3.7214 

 

5   CONCLUDING REMARKS 
A Fortran program based on finite elements (FE) has been developed for 

buckling analysis of thin rectangular laminated decks plates using classical 

laminated plate theory (CLPT). The problem of buckling loads of generally 

layered composite plates has been studied. The problem is analyzed and solved 

using the energy approach, which is formulated by a finite element model. In 
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this method, quadrilateral elements are applied utilizing a four noded model. 

Each element has three degrees of freedom at each node. The degrees of 

freedom are: lateral displacement ( ), and rotation ( ) and ( ) about the   and 

  axes respectively. The finite element model has been formulated to compute 

the buckling loads of laminated plates with rectangular cross – section and to 

study the effects of lamination scheme on the non – dimensional critical 

buckling loads of laminated composite plates. New results have been presented. 

These results show that the symmetric laminate is stiffer than the anti – 

symmetric one. This phenomenon is caused by coupling between bending and 

stretching which lowers the buckling loads of symmetric laminate. 
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