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Introduction
The objective of this research paper is to present a complete and 

up to date treatment of uniform cross section rectangular laminated 
decks plates on buckling. Finite element (FE) method is used for 
solving governing equations of thin laminated composite plates and 
their solution using classical laminated plate theory (CLPT). Plates 
are common structural elements of most engineering structures, 
including aerospace, automotive, and civil engineering structures, 
and their study from theoretical and experimental analyses points 
of view are fundamental to the understanding of the behavior of 
such structures.

The motivation that led to the carrying out of the present study 
has come from many years of studying classical laminated plate 
theory (CLPT) and its analysis by the finite element (FE) method, 
and also from the fact that there does not exist a publication that 
contains a detailed coverage of classical laminated plate theory 
and finite element method in one volume. The present study is 
an attempt to fulfill the need for a complete treatment of classical 
laminated theory of plates and its solution by a numerical solution.

The material presented is intended to serve as a basis for a 
critical study of the fundamentals of elasticity and several branches  
of solid mechanics including advanced mechanics of materials, 
theories of plates, composite materials and numerical methods.

The problem of critical buckling loads of laminated composite 
plates is analyzed and solved using the energy method which is 
formulated by a finite element model. In that model, four nodded 
rectangular elements of a plate is considered. Each element has 
three degrees of freedom at each node. The degrees of freedom are 
the lateral displacement w, and the rotations ϕ and ψ about the y 
and x axes respectively.

The effects of lamination scheme on the non – dimensional 
critical buckling loads of laminated composite plates are 
investigated.

The material chosen has the following properties: 

1 2 12 13 23 2 12/ 5,10,20,25,40; 0.5 ; 0.25E E G G G E v= = = = =

Several numerical methods could be used in this study, but the 
main ones are finite difference method (FDM), dynamic relaxation 
coupled with finite difference method (DR) as is shown in references 
[1-8], and finite element method (FEM).

In the present work, a numerical method known as finite 
element method (FEM) is used. It is a numerical procedure for 
obtaining solutions to many of the problems encountered in 
engineering analysis. It has two primary subdivisions. The first 
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Abstract 
It is observed that, for all cases the buckling load increases with the mode number but at different rates depending on whether the plate is 

simply supported, clamped or clamped – simply supported. The buckling load is a minimum when the plate is simply supported and a maximum 
when the plate is clamped. Because of the rigidity of clamped boundary condition, the buckling load is higher than in simply supported boundary 
condition. It is also observed that as the mode number increases, the plate needs additional support.
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utilizes discrete elements to obtain the joint displacements and 
member forces of a structural framework. The second uses the 
continuum elements to obtain approximate solutions to heat 
transfer, fluid mechanics, and solid mechanics problem. The 
formulation using the discrete element is referred to as matrix 
analysis of structures and yields results identical with the classical 
analysis of structural frameworks. The second approach is the true 
finite element method. It yields approximate values of the desired 
parameters at specific points called nodes. A general finite element 
computers program, however, is capable of solving both types of 
problems and the name” finite element method” is often used to 
denote both the discrete element and the continuum element 
formulations.

The finite element method combines several mathematical 
concepts to produce a system of linear and non – linear equations. 
The number of equations is usually very large, anywhere from 20 to 
20,000 or more and requires the computational power of the digital 
computer.

It is impossible to document the exact origin of the finite 
element method because the basic concepts have evolved over a 
period of 150 or more years. The method as we know it today is an 
outgrowth of several papers published in the 1950th that extended 
the matrix analysis of structures to continuum bodies. The space 
exploration of the 1960th provided money for basic research, 
which placed the method of a firm mathematical foundation and 
stimulated the development of multi-purpose computer programs 
that implemented the method. The design of airplanes, unmanned 
drones, missiles, space capsules, and the like, provided application 
areas.

The finite element method (FEM) is a powerful numerical 
method, which is used as a computational technique for the solution 
of differential equations that arise in various fields of engineering 
and applied sciences. The finite element method is based on the 
concept that one can replace any continuum by an assemblage of 
simply shaped elements, called finite elements with well-defined 
force, displacement, and material relationships. While one may not 
be able to derive a closed – form solution for the continuum, one 
can derive approximate solutions for the element assemblage that 
replaces it. The approximate solutions or approximation functions 
are often constructed using ideas from interpolation theory, and 
hence they are also called interpolation functions. For more details 
refer to References [9-11].

Mathematical Formulations

Introduction

The following assumptions were made in developing the 
mathematical formulations of laminated plates:

1.	 All layers behave elastically;

2.	 Displacements are small compared with the plate 
thickness;

3.	 Perfect bonding exists between layers;

4.	 The laminate is equivalent to a single anisotropic layer; 

5.	 The plate is flat and has a constant thickness; 

6.	 The plate buckles in a vacuum and all kinds of damping 
are neglected.

Unlike homogeneous plates, where the coordinates are chosen 
solely based on the plate shape, coordinates for laminated plates 
should be chosen carefully. There are two main factors for the choice 
of the coordinate system. The first factor is the shape of the plate. 
Where rectangular plates will be best represented by the choice of 
rectangular (i.e. Cartesian) coordinates. It will be relatively easy 
to represent the boundaries of such plates with coordinates. The 
second factor is the fiber orientation or orthotropic. If the fibers are 
set straight within each lamina, then rectangular orthotropic would 
result. It is possible to set the fibers in a radial and circular fashion, 
which would result in circular orthotropic. Indeed, the fibers can 
also be set in elliptical directions, which would result in elliptical 
orthotropic.

The choice of the coordinate system is of critical importance 
for laminated plates. This is because plates with rectangular 
orthotropic could be set on rectangular, triangular, circular or other 
boundaries. Composite materials with rectangular orthotropic 
are the most popular, mainly because of their ease in design and 
manufacturing. The equations that follow are developed for 
materials with rectangular orthotropic.

Figure 1 shows the geometry of a plate with rectangular 
orthotropic drawn in the Cartesian coordinates X, Y, and Z or 1, 2, 
and 3. The parameters used in such a plate are: (1) the length in the 
X-direction, (a); (2) the length in the Y – direction (i.e. breadth), (b); 
and (3) the length in the Z – direction (i.e. thickness), (h). 

Figure 1: The geometry of a laminated composite plate.

Fundamental equations of elasticity

Classical laminated plate theory (CLPT) is selected to formulate 
the problem. Consider a thin plate of length a, breadth b, and 
thickness h as shown in Figure 2(a), subjected to in – plane loads 
Rx, Ry and Rxy as shown in Figure 2(b). The in-plane displacements 
u(x,y,z) and v(x,y,z) can be expressed in terms of the out of plane 
displacement w(x,y) as shown below:
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Figure 2: A plate showing dimensions and deformations..

The displacements are:
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Where ,  and are mid – plane displacements in the direction of 
the x, y and z axes respectively; z is the perpendicular distance from 
mid – plane to the layer plane.

The plate shown in Figure 2(a) is constructed of an arbitrary 
number of orthotropic layers bonded together as in Figure 3.

Figure 3: Geometry of an n-layered laminate.

The strains are:
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The virtual strains:
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The virtual strain energy:

                          T

v
U dVδ δ σ= ∈∫                                (4)

But,

Cσ = ∈

Where,
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If we neglect the in-plane displacements  and  and considering 
only the linear terms in the strain-displacement equations, we 
write:
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The Numerical Method

The finite element is used in this analysis as a numerical 
method to predict the buckling loads and shape modes of buckling 
of laminated rectangular plates [12,13]. In this method of analysis, 
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four – nodded type of elements is chosen. These elements are 
the four – nodded bilinear rectangular elements of a plate. Each 
element has three degrees of freedom at each node. The degrees of 
freedom are the lateral displacement (w), and the rotations (ϕ) and 
(ψ) about the (X) and (Y) axes respectively.

The finite element method is formulated by the energy method. 
The numerical method can be summarized in the following 
procedures:

•	 The choice of the element and its shape functions.

•	 Formulation of finite element model by the energy 
approach to develop both element stiffness and 
differential matrices.

•	 Employment of the principles of non – dimensionality to 
convert the element matrices to their non – dimensional 
forms.

•	 Assembly of both element stiffness and differential 
matrices to obtain the corresponding global matrices.

•	 Introduction of boundary conditions as required for the 
plate edges.

•	 Suitable software can be used to solve the problem. 

•	 For an n nodded element, and 3 degrees of freedom at 
each node.

Now express w in terms of the shape functions N (given in 
Appendix (B)) and nodded displacements , equation (6) can be 
written as:

                                  ezB aδ δ∈= −                               (7)

Where,

2 2 2
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The stress – strain relation is:

Cσ = ∈

Where C are the material properties which could be written as 
follows:
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Where  are given in Appendix (A).
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= ∑ ∫  is the bending stiffness, and eK

is the element stiffness matrix which could be written as follows:

e TK B DBdxdy=                      (9)

The virtual work done by external forces can be expressed as 
follows: Refer to Figure 4.

Figure 4: External forces acting on an element.

Denoting the nonlinear part of strain by 
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Therefore, equation (15) could be written in the following form:
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 is the differential stiffness matrix known also as geometric 
stiffness matrix, initial stress matrix, and initial load matrix. 

The total energy: 
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The elements stiffness matrix can be expressed as follows:
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The integrals in equations (19) and (20) are given in Appendix (C).

The shape local co-ordinate for a 4-nodded element is shown 
below in Figure 5.

The shape functions for the 4-nodded element expressed in 
global co-ordinates (x,y) are as follows:
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Figure 5: A four nodded element with local and global co-
ordinates.
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The values of the integrals are converted from local co-ordinate 
(r,s) to global co – ordinates.

The integrals of the shape functions in global co – ordinates 
are as follows:
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In the previous equations x y
a bh andh
n m

= = where a and b are the 
lengths of the plate along the x – and y – axis respectively. n and m 
are the number of elements in the x – and y – directions respectively.

The elements of the stiffness matrix and the differential 
matrix can be written as follows:
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The transformed stiffnesses are as follows:
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E1 and E2 are the elastic moduli in the direction of the fiber 
and the transverse directions respectively, v is the Poisson’s ratio. 
G12, G13, and G23 are the shear moduli in the x – y plane, y – z plane, 
and x – z plane respectively, and the subscripts 1 and 2 refer to the 
direction of fiber and the transverse direction respectively.

Effect of Boundary Conditions

The type of boundary support is an important factor in 
determining the buckling loads of a plate along with other factors 
such as aspect ratio, modulus ratio, … etc.

Three sets of boundary conditions, namely simply – simply 
supported (SS), clamped – clamped (CC), and clamped – simply 
supported (CS) were considered in this study. 

The variations of buckling load,  with the mode number for thin 
(a/h=20) symmetrically loaded laminated cross – ply (0/90/90/0) 
plate with modulus ratio (E1/E2=5) were computed and the results 
are given in Table 1 and Figure 6.

Figure 6: Effect of boundary conditions.

Table 1: The first five non – dimensional buckling loads 2 3
1/P Pa E h=  

of symmetric (0/90/90/0) square laminated plates with / 20a h = , and 
1 2/ 5E E = .

Mode Number
Boundary Conditions

SS CC CS

1 0.6972 2.1994 1.8225

2 1.2552 2.5842 2.0097

3 2.4284 4.1609 2.7116

4 2.6907 4.7431 4.3034

5 2.7346 5.0168 4.4536

It is observed that, for all cases the buckling load increases with 
the mode number but at different rates depending on whether the 
plate is simply supported, clamped or clamped – simply supported. 
The buckling load is a minimum when the plate is simply supported 
and a maximum when the plate is clamped. Because of the rigidity 
of clamped boundary condition, the buckling load is higher than in 
simply supported boundary condition. It is also observed that as 
the mode number increases, the plate needs additional support.

Conclusion

The buckling load is a minimum when the plate is simply 
supported and a maximum when the plate is clamped. Because 

of the rigidity of clamped boundary condition, the buckling load 
is higher than in simply supported boundary condition. It is also 
observed that as the mode number increases, the plate needs 
additional support.
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