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ABSTRACT: Finite element (FE) method is presented for the analysis of thin 

rectangular laminated composite plates under the biaxial action of in – plane 

compressive loading, such plates are common on bridges.  The analysis uses the 

classical laminated plate theory (CLPT) which does not account for shear 

deformations. In this theory it is assumed that the laminate is in a state of plane 

stress, the individual lamina is linearly elastic, and there is perfect bonding 

between layers. The classical laminated plate theory (CLPT), which is an 

extension of the classical plate theory (CPT) assumes that normal to the mid – 

surface before deformation remains straight and normal to the mid – surface 

after deformation. Therefore, this theory is only adequate for buckling analysis 

of thin laminates. 

A Fortran program has been compiled. New numerical results are generated 

for in – plane compressive biaxial buckling which serve to quantify the effects 

of lamination scheme, aspect ratio, material anisotropy, fiber orientation of 

layers, reversed lamination scheme and boundary conditions.  

It was found that symmetric laminates are stiffer than the anti – symmetric 

one due to coupling between bending and stretching which decreases the 

buckling loads of symmetric laminates. The buckling load increases with 

increasing aspect ratio, and decreases with increase in modulus ratio. The 

buckling load will remain the same even when the lamination order is reversed. 

The buckling load increases with the mode number but at different rates 

depending on the type of end support. It is also observed that as the mode 

number increases, the plate needs additional support. 

 

KEYWORDS: Finite element method; classical plate theory; buckling; thin 

plates; laminated composites; new numerical results.   

 

1 INTRODUCTION 
Composites were first considered as structural materials a little more than three 

quarters of a century ago. From that time to now, they have received increasing 
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attention in all aspects of material science, manufacturing technology, and 

theoretical analysis, such plates are common on bridges.  

The term composite could mean almost anything if taken at face value, since 

all materials are composites of dissimilar subunits if examined at close enough 

details. But in modern materials engineering, the term usually refers to a matrix 

material that is reinforced with fibers. For instance, the term "FRP" which refers 

to Fiber Reinforced Plastic usually indicates a thermosetting polyester matrix 

containing glass fibers, and this particular composite has the lion's share of 

today commercial market. 

Many composites used today are at the leading edge of materials technology, 

with performance and costs appropriate to ultra-demanding applications such as 

space crafts. But heterogeneous materials combining the best aspects of 

dissimilar constituents have been used by nature for millions of years. Ancient 

societies, imitating nature, used this approach as well: The book of Exodus 

speaks of using straw to reinforce mud in brick making, without which the 

bricks would have almost no strength. Here in Sudan, people from ancient times 

dated back to Meroe civilization, and up to now used zibala (i.e. animals’ dung) 

mixed with mud as a strong building material. 

As seen in table 1 below, which is cited by David Roylance [1], Stephen et 

al. [2], Turvey et al. [3], and Mahmoud Yassin Osman and Osama Mohammed 

Elmardi [4], [5], [6] and [7], the fibers used in modern composites have 

strengths and stiffnesses far above those of traditional structural materials. The 

high strengths of the glass fibers are due to processing that avoids the internal or 

external textures flaws which normally weaken glass, and the strength and 

stiffness of polymeric aramid fiber is a consequence of the nearly perfect 

alignment of the molecular chains with the fiber axis. 

 

Table 1. Properties of composite reinforcing fibers 

Material 
E 

(GN/m2) 
b  

(GN/m2) 

b  

(%) 

  

(Mg/m3) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass 72.4 2.4 2.6 2.54 28.5 0.95 

S-glass 85.5 4.5 2.0 2.49 34.3 1.8 

Aramid 124 3.6 2.3 1.45 86 2.5 

Boron 400 3.5 1.0 2.45 163 1.43 

H S 

graphite 
253 4.5 1.1 1.80 140 2.5 

H M 

graphite 
520 2.4 0.6 1.85 281 1.3 

 

Where E is Young's modulus, b  is the breaking stress, 
b   is the breaking 

strain, and   is the mass density. 

The theory used in the present work comes under the class of displacement-

based theories. Extensions of these theories which include the linear terms in z 
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in u and v and only the constant term in w, to account for higher – order 

variations and to laminated plates, can be found in the work of Yang, Norris and 

Stavsky [8], Whitney and Pagano [9], Phan and Reddy [10] and Mahmoud 

Yassin Osman and Osama Mohammed Elmardi [11]. In the present work, 

classical plate theory is used, which is appropriate for thin laminated plates.  

In the present study, the composite media are assumed free of imperfections i.e. 

initial geometrical imperfections due to initial distortion of the structure, and 

material and / or constructional imperfections such as broken fibers, 

delaminated regions, cracks in the matrix material, foreign inclusions and small 

voids which are due to inconvenient selection of fibers / matrix materials and 

manufacturing defects. Therefore, the fibers and matrix are assumed perfectly 

bonded. 

 

2 MATHEMATICAL FORMULATIONS 
Consider a thin plate of length a, breadth b, and thickness h as shown in Figure 

1(a), subjected to in – plane loads      ,      and         as shown in Figure 1(b). The 

in – plane displacements                   and                   , can be expressed in terms of 

the out – of – plane displacement              as shown below. 

     
   
   

 
     

(1) 

     
   

   
     

 

 
                                   (a)                                                             (b) 

Figure 1 
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Figure 2.  Geometry of an n-Layered laminate 

 

The plate shown in figure 1(a) is constructed of an arbitrary number of 

orthotropic layers bonded together as in figure 2 above. The strain – 

displacement relations according to the large deformation theory are: 

   
   

   
 

 

 
 
   

   
 
 

   
   

    
 

 

 
 
   

   
 
 

 

   
   

   
 

 

 
 
   

   
 
 

   
   

    
 

 

 
 
   

   
 
 

 

    
   

   
 

   

   
 

   

   
 
   

   
    

    

     
 

   

   
 
   

   
 

These can be written as: 

         

Where,                         
  

  and        and        represent the linear and non – linear 

parts of the strain, i.e.  

      
   

    
    

   

    
    

   

     
 

 

                                        

   
 

 
  

   

   
 
 

  
   

   
 
 

  
   

   
 
   

   
 

 

                                  

The virtual linear strains can be written as: 

        
  

    
  

  

    
   

   

     
 

 

                                      

The virtual linear strains energy 

        
     

 
                                             (5) 

Where V denotes volume 

The stress – strain relations,  
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Where C are the material properties. 

   

         

         

         

  

Where        are given in Appendix (A). 

Substitute for    in equation (5). 

        
     

   
 

                                           (6) 

Now express      in terms of the shape functions N (given in Appendix (B)) and 

nodal displacements       , equation (2) can be written as: 

                
Where, 

    
     

    
   
    

    
    

     

     
 

 

 

Hence equation (6) can be written in the form,  

                     
 

          

or  

          
                

Where, 

           
  

    

 

   

 

Hence, the virtual strain energy,  

           
                                                  (7) 

Where        is the element stiffness matrix, 

                                                                  (8) 
Now equation (3) can be written in the form, 

    
 

 

 
 
 
 
 
 
 
   

   
 

 
   

   
   

   

   

    
 
 
 
 
 
 

 

 
 
 
 
   

   
   

    
 
 
 
 

The non – linear virtual strain, 
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The virtual work, 

       
        

   

   
   
   

   
 

  

 

 
 
 
 
 
  

   
   

  

   
  

 
  

   
  

  

   
  

 
 
 
 
 

  

  

  

   

     

     
   

   
   
   

   
 

 
 
 
 
 
  

   
   

  

   
  

 
  

   
  

  

   
  

 
 
 
 
 

 

  

  

   

       

Where, 

                            
   

    

   

And      ,      , and         are the in – plane stresses. 

The previous equation can be written as:  

     
  

   
     

  

   
    

     

     
 

 
 
 
 
 
   

   

   

    
 
 
 
 

      

Introducing the shape functions and nodal displacements, we get: 

          
    

   
   
    

   
  

     

     
 

 
 
 
 
 
    

   

    

    
 
 
 
 

        

Now, let                                                           
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Where, 
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K
eD

  is the element differential matrix. 

Now,   

            

                                              
            

    
        

Now since              
  is arbitrary and cannot be equal to zero, it follows that, 

        
        

When the plate is divided into a number of elements, the global equation is: 

       
                                                 (11) 

Where, 

                         

Since,            then the determinant, 

      
                                                   (12) 

Hence, the buckling loads        and the buckling modes can be evaluated. 

The elements of the stiffness matrix are obtained from equation (8) which can 

be expanded as follows: 

   
    

     

    
   
    

    
    

     

     
  

         

         

         

 

 
 
 
 
 
 
 

    

   

    

   

 
    

     
 
 
 
 
 
 

      

i.e. 

    
       

    

   
   
    

   
     

    

   
 
    

   
 

    

   
 
    

      

       

    

   
 
    

   
     

    

     
  
    

     
      

    

     
  
    

   
 

    

   
 
    

     
  

     
  

    

     
 
    

   
 

    

   
 
    

     
                         

The elements of the differential matrix are obtained from equation (10) which 

when expanded becomes: 
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The integrals in equations (13) and (14) are given in Appendix (C). We use a 4 

– noded element as shown in Figure 3 below. 

 
Figure 3 

 

The shape functions for the 4–noded element expressed in global 

coordinates          .  we take: 

                
          

     
           

          
     

            
      

 

                   
   

   
                      

   

   
 

The shape functions in local coordinates              are as follows: 

                         
              

       
   

      
         

        
        

          
  

Where                             

The coefficients                              are given in Appendix (B). 

In the analysis, the following non – dimensional quantities are used: 

     
 

 
          

 

 
              

 

 
     

     
 

    
 
          

  

    
                 

Where,       is the modulus in direction of the fiber. 
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3 BOUNDARY CONDITIONS 
All of the analyses described in the present paper have been undertaken 

assuming the plate to be subjected to identical and/ or different support 

conditions on the four edges of the plate. The three sets of the of the edge 

conditions used here are designated as clamped – clamped (CC), simply – 

simply supported (SS), clamped – simply supported (CS), are shown in table 2 

below. 

 Table 2. Boundary conditions 
Boundary 

Conditions 

Plate dimensions in y – 

coordinate  

          

Plate dimensions in x – 

coordinate 

         

CC                 

SS             

CS               

 

4 NUMERICAL RESULTS 
With confidence in the finite element (FE) program proved through the various 

verification exercises undertaken, it was decided to undertake some study cases 

and generate new results for biaxial loaded laminated composite rectangular 

plates. The plates were assumed to be simply supported (SS), clamped (CC) and 

clamped – simply supported (CS) on all four edges.  

The problem of critical buckling loads of laminated composite plates is 

analyzed and solved using the energy method which is formulated by a finite 

element model. In that model, a four noded rectangular elements of a plate is 

considered. Each element has three degrees of freedom at each node. The 

degrees of freedom are the lateral displacement   , and the rotations    and    

about the    and    axes respectively. 

The effects of lamination scheme, aspect ratio, material anisotropy, fiber 

orientation of layers, reversed lamination scheme and boundary conditions on 

the non – dimensional critical buckling loads of laminated composite plates are 

investigated. 

The material chosen has the following properties:  

                                                   
 

4.1 Effect of lamination scheme 
In the present analysis the lamination scheme of plates is supposed to be 

symmetric, anti – symmetric and quasi – isotropic. 

Four lamination schemes were considered which are symmetric and anti – 

symmetric cross – ply and angle – ply laminates. Table 3 gives a comparison 

between the non – dimensional buckling loads for all lamination schemes. The 

results are shown graphically in figure 4. The thickness of all layers is assumed 

equal, the length to thickness ratio (      ), and the modulus ratio (      
 ). It is noticed from table 3 and figures 4, 5 and 6 that the values of the non – 
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dimensional buckling loads for both symmetric and anti – symmetric lamination 

are slightly different, except for symmetric and anti – symmetric angle – ply 

laminates which are exactly the same. Because of this fact, the rest of the 

upcoming effects will be discussed for symmetric case only. The results 

indicate that the symmetric laminate is stiffer than the anti – symmetric one. 

This phenomenon is caused by coupling between bending and stretching which 

lowers the buckling loads of symmetric laminate. 

 

Table 3.  The first five non – dimensional buckling loads           
  of 

symmetric cross – ply (0/ 90/ 90/ 0) and anti – symmetric cross – ply (0/ 90/ 0/ 

90), and symmetric angle – ply (45/ -45/ -45/ 45) and anti – symmetric angle – 

ply (45/ -45/ 45/ -45) laminated plates with       , and         
 

Lamination  

Scheme 

Mode 

Number 

Boundary Conditions  

SS CC CS 

 1 0.6972 2.1994 1.8225 

 2 1.2522 2.5842 2.0097 

0/ 90/ 90/ 0 3 2.4284 4.1609 2.7116 

 4 2.6907 4.7431 4.3034 

 5 2.7346 5.0168 4.4536 

 1 0.6973 2.2273 1.5591 

 2 1.9947 3.9687 2.3391 

0/ 90/ 0/ 90 3 1.9958 3.9732 3.7581 

 4 2.6912 4.7871 3.8290 

 5 4.3962 7.0544 4.5402 

 1 0.8729 1.9505 1.4756 

 2 1.6400 2.8534 2.1162 

45/-45/-45/45 3 2.3130 3.8941 3.3039 

 4 2.7100 4.3753 3.3068 

 5 3.5488 5.2694 4.4166 

 1 0.8729 2.2010 1.6554 

 2 1.6400 3.7616 2.5672 

45/-45/45/-45 3 2.3130 3.7654 3.4642 

 4 2.7100 5.6599 4.2174 

 5 3.5488 5.9540 4.8091 
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Figure 4.  Effect of lamination scheme for simply supported laminates 

 

 
Figure 5.  Effect of lamination scheme for clamped – clamped laminates  
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Figure 6.  Effect of lamination scheme for clamped – simply supported laminates 

 

Tables 4 and 5 show the buckling load of quasi – isotropic rectangular 

composite plate with             ,            and different modulus ratios (      
                      ). The buckling load is highly influenced by its boundary 

conditions. The buckling load of the quasi – isotropic (0/+45/-45/90) 

rectangular composite plate with CC type boundary condition is 1.5 times 

higher than the buckling load of the composite plate with CS type boundary 

condition and more than 3 times of SS type boundary condition. 

 

Table 4. The first three non – dimensional buckling loads of quasi – isotropic 

(0/+45/-45/90) laminated plates with a/h=20, and          
Mode  

Number 

Boundary Conditions 

SS CC CS 

1 0.4905 1.6878 1.1683 

2 1.4842 3.0187 1.7359 

3 1.4850 3.0229 2.7673 

  

Table 5. The first three non – dimensional buckling load of quasi – isotropic 

(0/+45/-45/90) laminated plates with a/h=20, and         
Mode  

Number 

Boundary Conditions 

SS CC CS 

1 0.7338 2.2255 1.5717 

2 2.0202 3.9506 2.3714 

3 2.0214 3.9549 3.7214 
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4.2 Effect of aspect ratio  
In this study, the buckling loads for symmetrically loaded laminated composite 

plates of layer orientation 0/90/90/0 have been determined for seven different 

aspect ratios ranging from 0.5 to 2.0 and two modulus ratios 40 and 5 as shown 

in tables 6 and 7 and figures 7 and 8. The first mode of buckling loads was 

considered. It is observed that the buckling load increases continuously with 

increasing aspect ratio but the rate of increase is not uniform. This may be due 

to the effect of bending – extensional twisting stiffness which increases the 

critical load. The buckling load is maximum for clamped – clamped (CC), 

clamped – simply supported (CS) while minimum for simply – simply 

supported (SS) boundary conditions. This means that as the plate becomes more 

restrained, its resistance to buckling increases. The reason is that the structural 

stiffness reduces due to its constrains. 

 

Table 6. The first three non – dimensional buckling loads           
  of 

symmetric cross – ply (0/ 90/ 90/ 0) laminated plates with       , and 

         
Aspect Ratio 

(   ) 

Mode 

Number 

SS CC CS 

 1 0.4143 1.0742 0.9679 

0.5 2 0.4236 1.0941 1.0484 

 3 0.5408 1.3751 1.1257 

 1 0.4300 1.2389 1.0444 

0.75 2 0.4978 1.2691 1.2043 

 3 0.6520 1.8354 1.2921 

 1 0.4409 1.3795 1.0723 

1.0 2 0.5580 1.5286 1.3105 

 3 1.0763 2.1648 1.6946 

 1 0.4224 1.5549 1.1349 

1.25 2 0.7795 1.7455 1.4327 

 3 1.6164 3.0019 1.8042 

 1 0.4400 1.6402 1.2543 

1.5 2 1.0787 2.2999 1.3330 

 3 1.6841 3.2702 2.4753 

 1 0.4885 1.8361 1.1494 

1.75 2 1.4473 3.0138 1.6342 

 3 1.8520 3.6574 2.7310 

 1 0.5642 2.1358 1.1054 

2.0 2 1.7525 3.7696 2.0207 

 3 1.8813 3.8703 2.8553 
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Table 7. The first three non – dimensional buckling loads           
  of 

symmetric cross – ply (0/ 90/ 90/ 0) laminated plates with        and 

        
Aspect Ratio 

(   ) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6787 1.7786 1.6325 

0.5 2 0.6841 1.8364 1.7192 

 3 0.8672 2.2141 1.9284 

 1 0.6698 2.0107 1.7117 

0.75 2 0.8831 2.1504 1.9339 

 3 1.4912 2.7694 2.2689 

 1 0.6972 2.1994 1.8225 

1.0 2 1.2552 2.5842 2.0097 

 3 2.4284 4.1609 2.7116 

 1 0.7726 2.3958 1.8397 

1.25 2 1.7753 3.5341 2.1821 

 3 2.6844 5.1641 3.8539 

 1 0.8943 2.7961 1.7643 

1.5 2 2.4305 4.8034 2.7358 

 3 2.6675 5.2420 4.6305 

 1 1.0588 3.3873 1.7741 

1.75 2 2.6919 5.4542 3.4532 

 3 3.2171 6.3629 4.7373 

 1 1.2630 4.1517 1.8578 

2.0 2 2.7619 5.8342 4.3179 

 3 4.1301 8.1942 4.6131 

 

 

Figure 7.  Effect of aspect ratio for different boundary conditions,           
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Figure 8.  Effect of aspect ratio for different boundary conditions,         

 

4.3 Effect of material anisotropy  
The buckling loads as a function of modulus ratio of symmetric cross – ply 

plates (0/ 90/ 90/ 0) are illustrated in table 8 and figure 9. As confirmed by other 

investigators, the buckling load decreases with increase in modulus ratio. 

Therefore, the coupling effect on buckling loads is more pronounced with the 

increasing degree of anisotropy. It is observed that the variation of buckling 

load becomes almost constant for higher values of elastic modulus ratio. 

 
Figure 9.  Effect of material anisotropy 
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Table 8.  The first three non – dimensional buckling loads           
  of 

symmetric cross – ply (0/ 90/ 90/ 0) square laminated plates for different 

modulus ratios with        

      Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6972 2.1994 1.8225 

5 2 1.2552 2.5842 2.0097 

 3 2.4284 4.1609 2.7116 

 1 0.5505 1.8548 1.3928 

10 2 0.8557 1.8951 1.8292 

 3 1.6532 2.9814 1.9089 

 1 0.5019 1.6663 1.2505 

15 2 0.7232 1.7248 1.6428 

 3 1.3966 2.6049 1.7694 

 1 0.4775 1.5515 1.1791 

20 2 0.6569 1.6524 1.5096 

 3 1.2683 2.4228 1.7394 

 1 0.4629 1.4828 1.1365 

25 2 0.6172 1.6055 1.4299 

 3 1.1916 2.3171 1.7214 

 1 0.4531 1.4366 1.1078 

30 2 0.5907 1.5723 1.3766 

 3 1.1402 2.2481 1.7094 

 1 0.4462 1.4044 1.0877 

35 2 0.5723 1.5479 1.3391 

 3 1.1043 2.2006 1.7009 

 1 0.4409 1.3795 1.0723 

40 2 0.5580 1.5286 1.3105 

 3 1.0763 2.1648 1.6946 

  

4.4 Effect of fiber orientations of layers 
The variation of the buckling load,     with fiber orientation        of square 

laminated plate is shown in tables 9 and 10, and figures 10 and 11. Three 

boundary conditions SS, CC and CS are considered in this case. The buckling 

loads have been determined for two modulus ratios 40 and 5. The curves of 

simply – simply supported (SS) boundary conditions show maximum value of 

buckling load at          . However, this trend is different for a plate under 

clamped – clamed (CC) boundary conditions which show minimum buckling 

load at           . For clamped – simply supported, it is observed that the 

buckling load decreases continuously with   , this may be due to the total and 

partial fixed rotation (              ) in the two later cases.  

 

 

 

 

 



Elmardi Et Al                                                                                                                   35 

Table 9. The first three non – dimensional buckling loads           
  of 

laminated plates for different fiber orientations ( ) with       , and 

         

Orientation Angle ( ) Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.2604 0.6134 0.5561 

0 2 0.2825 0.6398 0.5729 

 3 0.3960 0.8738 0.6745 

 1 0.2759 0.5957 0.5496 

15 2 0.3171 0.6123 0.5855 

 3 0.4771 0.8638 0.7570 

 1 0.2823 0.5636 0.5114 

30 2 0.3125 0.5834 0.5352 

 3 0.4861 0.9552 0.7902 

 1 0.2773 0.5207 0.4230 

45 2 0.3253 0.5842 0.4490 

 3 0.5135 0.9793 0.7093 

 1 0.2834 0.5574 0.3073 

60 2 0.3116 0.5788 0.3895 

 3 0.4783 0.9107 0.6362 

 1 0.2762 0.5859 0.3137 

75 2 0.3153 0.6043 0.3297 

 3 0.4161 0.8252 0.4924 

 1 0.2602 0.6061 0.3069 

90 2 0.2811 0.6260 0.3438 

 3 0.3908 0.8429 0.4801 

 
Table 10. The first three non – dimensional buckling loads           

  of 

laminated plates for different fiber orientations ( ) with       , and 

        

Orientation Angle ( ) Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6970 2.1130 1.6496 

0 2 1.0086 2.1396 2.0991 

 3 1.7709 3.1397 2.1597 

 1 0.7108 2.0261 1.6665 

15 2 1.0908 2.1400 1.9833 

 3 1.8704 3.2340 2.2141 

 1 0.7457 1.8142 1.6326 

30 2 1.2613 2.2494 1.7099 

 3 2.0671 3.4809 2.4700 

 1 0.7665 1.7189 1.3114 

45 2 1.3477 2.3567 1.7689 

 3 2.1557 3.5899 2.7032 

 1 0.7457 1.8147 1.0893 

60 2 1.2602 2.2457 1.7913 

 3 2.0637 3.4650 2.6452 
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Orientation Angle ( ) Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.7110 2.0264 0.9824 

75 2 1.0898 2.1366 1.6562 

 3 1.8659 3.2178 2.7338 

 1 0.6970 2.1101 0.9573 

90 2 1.0080 2.1389 1.5827 

 3 1.7666 3.1269 2.7322 

 
Figure 10.  Effect of fiber orientation of layers,          
 

 
Figure 11.  Effect of fiber orientation of layers,         
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4.5 Effect of reversing lamination scheme 
In order to study the stacking sequence of laminated plates, two lamination 

schemes of cross – ply (0/ 90) and (90/ 0) and two other lamination of angle ply 

(45/ -45) and (-45/ 45) were considered. The results of their buckling loads of 

parameter (                   
  ) are given in tables 11, 12, 13 and 14. Three 

boundary conditions SS, CC and CS are considered in this case. The buckling 

loads have been determined for two modulus ratios 40 and 5. It is observed that, 

the buckling loads are completely the same for the given first three modes. 

Therefore, it can be concluded that the buckling load of laminated plates will 

remain the same even if the lamination order is reversed. The reason behind this 

is that the transformed elastic coefficients,         , are equal for both lamination 

schemes.   

 

Table 11.  Non–dimensional buckling loads 

           
  of (0/ 90) and (90/ 0) lamination schemes of square  

laminated plates with       , and          
Lamination order Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.4410 1.6885 1.1512 

0/90 2 0.4494 3.0311 1.6881 

 3 1.4502 3.0349 2.5982 

 1 0.4410 1.6885 1.1512 

90/0 2 0.4494 3.0311 1.6881 

 3 1.4502 3.0349 2.5982 

   

Table 12.  Non–dimensional buckling loads 

           
  of (0/ 90) and (90/ 0) lamination schemes of square  

laminated plates with       , and         
Lamination order Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6970 2.2275 1.5593 

0/90 2 1.9943 3.9687 2.3388 

 3 1.9954 3.9733 3.7581 

 1 0.6970 2.2274 1.5594 

90/0 2 1.9944 3.9688 2.3393 

 3 1.9957 3.9733 3.7580 

     

Table 13. Non–dimensional buckling loads 

           
  of (45/ -45) and (-45/ 45) lamination schemes of square 

laminated plates with       , and          
Lamination order Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.8375 1.6524 1.2806 

45/-45 2 1.7263 2.7630 1.9965 

 3 1.7285 2.7659 2.5358 
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 1 0.8372 1.6527 .2805 

-45/45 2 .7262 2.7631 19963 

 3 1.7283 2.7660 2.5355 

 

Table 14. Non–dimensional buckling loads 

           
  of (45/ -45) and (-45/ 45) lamination schemes of square 

laminated plates with       , and         
Lamination order Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.9907 2.2010 1.6553 

45/-45 2 2.1995 3.7613 2.5668 

 3 2.2015 3.7652 2.4640 

 1 0.9908 2.2010 1.6553 

-45/45 2 2.1995 3.7613 2.5671 

 3 2.2015 3.7652 3.4636 

 

4.6 Effect of boundary conditions 
The type of boundary support is an important factor in determining the buckling 

loads of a plate along with other factors such as aspect ratio, modulus ratio, … 

etc. 

Three sets of boundary conditions, namely simply – simply supported (SS), 

clamped – clamped (CC), and clamped – simply supported (CS) were 

considered in this study.  

The variations of buckling load,     with the mode number for thin (        
    ) symmetrically loaded laminated cross – ply (0/90/90/0) plate with modulus 

ratio (              ) were computed and the results are given in table 15 and 

figure 12.  

It is observed that, for all cases the buckling load increases with the mode 

number but at different rates depending on whether the plate is simply 

supported, clamped or clamped – simply supported. The buckling load is a 

minimum when the plate is simply supported and a maximum when the plate is 

clamped. Because of the rigidity of clamped boundary condition, the buckling 

load is higher than in simply supported boundary condition. It is also observed 

that as the mode number increases, the plate needs additional support. 

 

Table 15.  The first five non–dimensional buckling loads           
  of 

symmetric (0/90/90/0) square laminated plates with       , and         
Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.6972 2.1994 1.8225 

2 1.2552 2.5842 2.0097 

3 2.4284 4.1609 2.7116 

4 2.6907 4.7431 4.3034 

5 2.7346 5.0168 4.4536 
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Figure 12.  Effect of boundary conditions 

 

5 CONCLUSIONS  
A Fortran program based on finite elements (FE) has been developed for 

buckling analysis of thin rectangular laminated plates using classical laminated 

plate theory (CLPT). The problem of buckling loads of generally layered 

composite plates has been studied. The problem is analyzed and solved using 

the energy approach, which is formulated by a finite element model. In this 

method, quadrilateral elements are applied utilizing a four noded model. Each 

element has three degrees of freedom at each node. The degrees of freedom are: 

lateral displacement (  ), and rotation (  ) and (  ) about the    and    axes 

respectively. To verify the accuracy of the present technique, buckling loads are 

evaluated and validated with other works available in the literature. Further 

comparisons were carried out and compared with the results obtained by the 

ANSYS package and the experimental result. The good agreement with 

available data demonstrates the reliability of finite element method used. 

The finite element model has been formulated to compute the buckling loads 

of laminated plates with rectangular cross – section and to study the effects of 

lamination scheme, aspect ratio, material anisotropy, fiber orientation of layers, 

reversed lamination scheme and boundary conditions on the non – dimensional 

critical buckling loads of laminated composite plates. Finally, a series of new 

results have been presented. These results show the following: 

1. The symmetric laminate is stiffer than the anti – symmetric one. This 

phenomenon is caused by coupling between bending and stretching which 

lowers the buckling loads of symmetric laminate. 

2. The buckling load is highly influenced by the end support. The buckling load 
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of the quasi – isotropic (0/+45/-45/90) rectangular composite plate with 

clamped – clamped type boundary condition is 1.5 times higher than the 

buckling load of the composite plate with clamped – simply supported (CS) 

type boundary condition, and more than 3 times of simply – simply 

supported (SS) type boundary condition. 

3. The buckling load increases continuously with increasing aspect ratio, but the 

rate of increase is not uniform. This may be due to the effect of bending – 

extensional twisting stiffness which increases the critical load.  

4. As the plate becomes more restrained, its resistance to buckling increases. 

The reason is that the structural stiffness reduces due to its constraints.  

5. The buckling load decreases with increase in modulus ratio. It is also 

observed that the variation of buckling load becomes almost constant for 

higher values of elastic modulus. This may be attributed to the coupling 

effect which increases with the increasing degree of anisotropy. 

6. The curves of simply – simply supported (SS) boundary conditions show 

maximum value of buckling load at           . However, this trend is 

different for a plate under clamped – clamped (CC) boundary conditions 

which show minimum load at           . For clamped – simply supported, it 

is observed that the buckling load decreases continuously with   . This may 

be due to the total and partial fixed rotation    and    in the two later cases. 

7. The buckling load of laminated plates will remain the same even if the 

lamination order is reversed. The reason behind this is that the transformed 

elastic coefficients,         , are equal for both lamination schemes.  

8. The buckling load increases with the mode number but at different rates 

depending on whether the plate is simply supported (SS), clamped (CC) or 

clamped – simply supported. The buckling load is a minimum when the plate 

is simply supported and a maximum when the plate is clamped. Because of 

the rigidity of clamped boundary condition, the buckling load is higher than 

in simply supported boundary condition. It is also observed that as the mode 

number increases, the plate needs additional support.                       
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APPENDICES 
Appendix (A) 

The transformed material properties are: 
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Appendix (B) 
       

i 

 

   

i.1 i,2 i,3 i,4 i,5 i,6 i,7 i,8 i,9 i,10 i,11 i,12 

   2 -3 3 0 -4 0 1 0 0 -1 1 1 

   1 -1 1 -1 -1 0 1 -1 0 0 1 0 

   -1 1 -1 0 1 1 0 0 -1 1 0 -1 

   2 -3 -3 0 4 0 1 0 0 1 -1 -1 

   1 -1 -1 -1 1 0 1 1 0 0 -1 0 

   1 -1 -1 0 1 -1 0 0 1 1 0 -1 

   2 3 3 0 4 0 -1 0 0 -1 -1 -1 

   -1 -1 -1 1 -1 0 1 1 0 0 1 0 

   -1 -1 -1 0 -1 1 0 0 1 1 0 1 

    2 3 -3 0 -4 0 -1 0 0 1 1 1 

    -1 -1 1 1 1 0 1 -1 0 0 -1 0 

    1 1 -1 0 -1 -1 0 0 -1 1 0 1 

 
Appendix (C) 

The integrals in equations (13) and (14) are given in nondimensional form as 

follows (limits of integration         to ): 
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In the above expressions     
 

 
    

 

 
  where   and   are the dimensions of 

the plate in the x – and y – directions respectively.   and   are the number of 

elements in the x – and y – directions respectively. Note that    
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   where   and   are the normalized coordinates, and        

 

 

 

 

 

 

 

 

 

 

 

 


