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produce stochastically over time. Each product requires 
a combination of resources, sequentially and/or in 
parallel, for different processing times. The overall aim 
of our work is to show how dynamic scheduling 
problem was solved and determined the best ways for 
dealing with this problem. 

  

a) Definition of dynamic scheduling problems 
A dynamic scheduling problem is generally 

viewed as a collection of linked static problems (Daria 
Terekhov, 2010) . Scheduling in manufacturing is an 
activity of allocating jobs to resources with respect to a 
time frame that considers critical ratio and considered  
as  N-P hard type of problem (Tarun Kanti Jana, 2013). 
The main problem in job-shop and flexible job-shop 
scheduling is that of obtaining the best possible 
schedules with optimal solutions (Ahmad Shahrizal 
Muhamad, 2011). There is a need to incorporate these 
dynamic events into the scheduling process, in order to 
ensure feasibility of the scheduling plan that the 
manufacturing system is following (Gomes, 2014). Real-
time scheduling theory has traditionally focused upon 
the development of algorithms for feasibility analysis 
(determining whether all jobs can complete execution 
by their deadlines) and run-time scheduling (generating 
schedules at run-time for systems that are deemed to 
be feasible) of such systems (Joseph Y-T. 
Leung"Sanjoy Baruah 2004). The problem of scheduling 
in the presence of real time events, termed dynamic 
scheduling. Real-time events have been classified into 
two categories. 

 

 
 

 

b) Scheduling problem classifications 
Suppose that (m) machines ( )mjM j ,...,1=

have to process (n) jobs ( )niJ i ,....1= . A schedule for 

each job is an allocation of one or more time intervals to 
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I. INTRODUCTION

II. Dynamic Scheduling Problems

Abstract- This paper discusses review of literature of dynamic 
scheduling in manufacturing. First, the problem is defined. 
The scheduling problems are classified based on the nature 
of the shop configuration into five classes, i.e., single 
machine, parallel machines, flow shop, job shop, and open 
shop.  A variety of approaches have been developed to solve 
the problem of dynamic scheduling. Dynamic scheduling 
could be classified into four categories, completely reactive 
scheduling, predictive-reactive scheduling, robust predictive-
reactive scheduling, and robust pro-active scheduling. It is 
better to combine together different techniques such as 
operational research and artificial intelligence to overcome 
dynamic scheduling problems so as to endow the scheduling 
system with the required flexibility and robustness, and to 
suggest various orientations for further work is this 
area of research.
Keywords: dynamic scheduling, rescheduling, real-time 
events, operational research, artificial intelligence.

Resource-related: Machine breakdown, operator illness, 
unavailability or tool failures, loading limits, delay in the 
arrival or shortage of materials, defective material 
(material with wrong specification), etc. 
Job-related: Rush jobs, job cancellation, due date 
changes, early or late arrival of jobs, change in job 
priority, changes in job processing time, etc. (Djamila 
Ouelhadj, 2008). Also (A. S. Santos, 2014), (Ouelhadj 
D., 2009) and (Chao Lu, 2017b) agree with that  
categories.

ynamic scheduling is the process of absorbing 
the effect of real-time events, analyzing the 
current status of scheduling and automatically 

modifying the schedule with optimized measures in 
order to mitigate disruptions (Amer Fahmya, 2014). Also 
dynamic scheduling  which is named rescheduling and 
it is the process of updating an existing production 
schedule in response to disruptions or other change 
(HERRMANN, 2006). Also dynamic scheduling  is a 
direct allocation of tasks to resources, according to 
given sequencing rules (Kalinowski Krzyszt
of 2013). Real-world scheduling problems are 
combinatorial, dynamic and stochastic (Daria Terekhov, 
2010). The goal in such problems is to determine an 
approach that dictates, at every decision epoch, how 
the available resources should be allocated among 
competing job requests in order to optimize the 
performance of the system (Daria Terekhova, 2014). 
Real world scheduling requirements are related with 
complex systems operated in dynamic environments. 
That make the current schedules easily outdated and 
unsuitable (A. Madureira, 2014). In a more general way, 
dynamic changes can be seen as a set of inserted and 
cancelled constraints (I. Pereira 2013). The dynamic 
scheduling problems that our work about are 
characterized by a stream of   products that   should 

D



one or more machines (Brucker, 2007). The scheduling 
problems are classified based on the nature of the shop 
configuration into five classes, i.e., single machine, 
parallel machines, flow shop, job shop, and open 
shop(J.Behnamian 2014)(Eliana María  González-Neira, 
2017). 

c) Optimality criteria (objective functions) 

We denote the finishing time of job iJ by iC , 

and the associated cost by ( )ii Cf . There are 

essentially two types of total cost functions. 

( ) ( ){ }niCfCf ii ,...,1max:max ==  

and 

( ) ( )∑ ∑=
n

i
iii CfCf

1
: 

 

 

iii dCL −=:                           lateness 

{ }iii cdE −= ,0max:               earliness 

{ }iii dCT −= ,0max:               tardiness
 

iii dCD −=:           absolute deviation
 

( )2: iii dCS −= squared deviation
 

iii difCU ≤= 0:
 

, 1 otherwise unit penalty. 

With each of these functions iG we get four possible 

objectives γ= ∑ ∑ iiiiii GwGGwG ,,max,max
. 

The most important bottleneck objective besides maxC
 

is maximum lateness iLL max:max =
 
. Other objective 

functions which are widely used are ∑ ,iT ∑ ,iiTw

∑ ,iU ∑ ,iiUw ∑ ,iD ∑ ,iiDw ∑ ,iS ∑ ,iiSw ∑ ,iE

∑ ii Ew . Linear combinations of these 

objective functions are also considered. An objective 
function which is non

 

decreasing with respect to all 
variables iC is called regular. Functions involving 

iii SDE ,, are not regular. The other functions defined 

so far are regular. A schedule is called active if it is not 
possible to schedule jobs (operations) earlier without 
violating some constraint. A schedule is called semi 
active if no job (operation) can be processed earlier 
without changing the processing order or violating the 
constraints(Brucker, 2007).
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Practical experience shows that some 
computational problems are easier to solve than others. 
Complexity theory provides a mathematical framework 
in which computational problems are studied so that 
they can be classified as “easy” or “hard”. One of the 
main issues of complexity theory is to measure the 
performance of algorithms with respect to 
computational time. A problem is called polynomially
( )P solvable if there exists a polynomial p such that

( ) ( )( )xpOxT ∈ for all inputs x for the problem, i.e. if 

there is a k such that ( ) ( )kxOxT ∈ (Jun Zhao, 2014). 

A commonly faced problem in flow-shop scheduling is 
that it belongs to the class of NP-hard problems    
(Florian T. Hecker, 2014). We are dealing with 
scheduling problems which are not decision problems, 
but optimization problems. An optimization problem is 
called NP-hard if the corresponding decision problem is 
NP-complete. A decision problem P is NP-complete in 
the strong sense if P belongs to NP and there exists a 
polynomial q for which Pq is NP-complete             
(Chuanli Zhao, 2017) . The knowledge that a scheduling 
problem is NP-hard is little consolation for the algorithm 
designer who needs to solve the problem. Fortunately, 
despite theoretical equivalence, not all NP-hard 
problems are equally hard from a practical perspective. 
We have seen that some NP-hard problems can be 
solved pseudo polynomially using dynamic 
programming. Another possibility is to apply 
approximation algorithms. One of the most successful 
methods of attacking hard combinatorial optimization 
problems is the discrete analog of “hill climbing”, known 
as local (or neighborhood) search. Any approach 
without formal guarantee of performance can be 
considered a “heuristic”. Such approaches are useful in 
practical situations if no better methods are available       
(Brucker, 2007).

Called bottleneck objectives and sum 
objectives, respectively. The scheduling problem is to 
find a feasible schedule which minimizes the total cost 
function. If the functions if are not specified, we set     

γ= maxf or γ=∑ if . However, in most cases we 

consider special functions if . The most common 

objective functions are that make span max

{ iC | ni ,...,1= }, total flow time∑
=

n

i
iC

1
, and weighted 

(total) flow time∑
=

n

i
iiCw

1
. In this case we write

∑== iCC γγ ,max , ∑= iiCwγ , respectively. 

Other objective functions depend on due dates id
which are associated with jobs iJ . We define for each 

job iJ : 



III. CURRENT DYNAMIC SCHEDULING 

APPROACHES 

Dynamic scheduling divided into four 
categories, completely reactive scheduling, predictive-
reactive scheduling, robust predictive-reactive 
scheduling, and robust pro-active scheduling (Ouelhadj 
D., 2009). In (Amer Fahmya, 2014) and (Djamila 
Ouelhadj, 2008) there are three main dynamic 
scheduling categories (or strategies),completely 
reactive scheduling, robust pro-active scheduling, 
predictive-reactive scheduling. 

a) Completely reactive scheduling 
In completely reactive scheduling no firm 

schedule is generated in advance and decisions are 
made locally in real-time. A dispatching rule is used to 
select the next job with highest priority to be processed 
from a set of jobs awaiting service at a machine that 
becomes free (Ouelhadj D., 2009). This scheduling type 
termed as “Dispatching” or “Priority Rule-based 
Scheduling”. This approach was introduced 
by(Dongjuan, 2010) who proposed a dynamic 
scheduling established through an aloging connectivity. 
A new policy proposed for scheduling systems with 
setups, the Hedging Zone Policy (HZP) policy belongs 
to what we called the Clearing Cruising (CC) Class, 
which includes all produce-up-to or base stock policies 
(Tubilla, 2011). There was another work presented deal 
with dynamic task allocation mechanism for machine 
scheduling in a job shop environment following agent 
based holonic control approach. (Tarun Kanti            
Jana 2013). A new optimization-based control algorithm 
was proposed that developed for the buffer 
management and the production scheduling of a 
multiple-line production plant (Andrea Cataldo 2015). 
An approach to dynamically adjust the parameters of a 
dispatching rule was presented depending on the 
current system conditions by using machine learning 
method and demonstrate the capability of their work by 
reducing the mean tardiness of job (Heger, 2016). 
There was another article deals with a parallel machine 
scheduling problem subject to non-interference 
constraints. The good results presented by the heuristic 
enable the evaluation of different storage policies for 
real size instances (Gabriela N. Maschiettoa 2016). A 
work of a multi- agent-based dynamic scheduling 
system was introduce for manufacturing flow lines 
(MFLs) using the Prometheus methodology (PM) 
considering the dynamic customer demands and  
internal disturbances. The proposed decision making 
system supports both static and dynamic scheduling 
(Ali Vatankhah Barenji, 2016). A complex manufacturing 
network model CMNBS was proposed for RFID "radio 
frequency identification" -driven DMS" discrete 
manufacturing system"  modeling, performance 
analyzing and dynamic scheduling (Jiewu Leng, 2017). 

There was another work, a simulated annealing and the 
dispatching rule based complete rescheduling 
approaches as well as the simulation optimization tools 
are proposed for dynamic identical parallel machines 
scheduling problem with a common server (Alper 
Hamzadayi 2016). There was another work considered 
the problem of optimizing on-line the production 
scheduling of a multiple-line production plant (Andrea 
Cataldo, 2015). 

b) Robust pro-active scheduling 
This scheduling approach is based on building 

predictive schedules with studying the main causes of 
disruptions and integrating them into the schedules. 
The disruptions are measure based on actual 
completion measures compared to the originally 
planned completions; then the mitigation of these 
disruptions was mitigated through simple adjustment to 
the activities durations(Ouelhadj D., 2009). An algorithm 
was developed for the optimal production schedule in a 
backward dynamic programming approach. It will be 
applied to the development of an algorithm for 
production scheduling problems which permit 
backlogging (C. S. SUNG 1987). 

 
Figure 1:  Completely reactive scheduling 

There was another work proposed a new neural 
network approach to solve the single machine mean 
tardiness scheduling problem and the minimum make 
spanjob shop scheduling problem. The proposed 
network combines the characteristics of neural networks 
and algorithmic approaches (Ihsan Sabuncuoglu 
1996).A scheduling approach that uses and compares 
inductive learning and neural networks was presented 
to improve the manufacturing system’s performance 
(PAOLO PRIORE, 2001). A scheduling method based 
on variable neighborhood search (VNS) was proposed 
for dynamic job shop scheduling problem with random 
job arrivals and machine breakdowns (M. A.Adibi 
2010).A multi-agent based approach is developed in 
another work to solve the part scheduling problem in 

© 2018    Global Journals

      

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
ol
um

e 
 X

V
II
I 
 I
ss
ue

  
V
  

V
er
si
on

 I
  

  
  
 

  

27

Y
e
a
r

20
18

J

A Review for Dynamic Scheduling in Manufacturing



multiple job shop cells with inter cell moves and flexible 
routes.A pheromone based approach (PBA) using multi 
agent is presented in this work, in which various types 
of pheromone inspired by ant colony optimization 
(ACO) are adopted as the basis of negotiation among 
agents (Dongni Li 2013). (Yiping Wen 2014) Proposeda 
schedulingoptimization algorithm named PACO-
TCbyutilizing the theory of ant colony optimization. (Zaki 
Ahmad Khan, 2017) Also propose dynamic task 
scheduling algorithm. The comparative simulation study 
shows that the proposed algorithm gives better 
performance in terms of task scheduling on various 
cube based multiprocessor networks.(Zhicheng Cai 
2017) This study presenteda bag-based delay 
scheduling strategy and a single-type based virtual 
machine interval renting method to decrease the 
resource renting cost. (Mehdi Abedi, 2017) Proposed a 
new mathematical modelto study scheduling with 
simultaneously consideration of aging effects and multi 
maintenances on un-related parallel machine problem 
in just in time environment.  

c) Predictive-reactive scheduling 
Predictive-reactive scheduling is the most 

common dynamic scheduling approach used in 
manufacturing systems. Most of the definitions reported 
in the literature on dynamic scheduling refer to 
predictive-reactive scheduling. 

 

Figure 2: Robust pro-active scheduling 

 

 

 

d) Robust pro-active scheduling 

This scheduling approach is based on building 
predictive schedules with studying the main causes of 

disruptions and integrating them into the schedules; 
which, predictably, can accommodate changes in a 
dynamic environment. The disruptions are measured 
based on actual completion measures compared to the 
originally planned completions.(Amer Fahmya, 2014) 

e)
 

Comparison of dynamic scheduling approaches
 

Dynamic scheduling has been defined under 
four categories: on-line scheduling (completely reactive 
approaches), predictive-reactive scheduling, robust 
predictive-reactive scheduling, and robust pro-active 
scheduling. In completely reactive scheduling, 
schedules are easily

 
generated using dispatching rules. 

However, the solution quality is poor due to the nature 
of these rules. Predictive-reactive scheduling is the 
most common approach in dynamic scheduling. 
Predictive reactive approaches search in a larger 
solution space, generate high quality schedules, and 
can generate better system performance to increase 
productivity and minimize operating costs compared 
with on-line scheduling and predictive scheduling. 
Simple schedule adjustments require little effort and are 
easy to implement. However, they may lead to poor 
system performance. Generating robust schedules lead 
to better system performance, even though robustness 
measures are not easy to define.  
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Predictive-reactive scheduling is a scheduling/
rescheduling process in which schedules are revised in 
response to real-time events. Predictive-reactive 
scheduling is a two step process. First, a predictive 
schedule is generated in advance with the objective of 
optimizing shop performance without considering 
possible disruptions on the shop floor. This schedule is 
then modified during execution in response to real-time 
events(Ouelhadj D., 2009).(Abdallah Elkhyari, 2003)
Introduced a new approach for solving dynamic RCPSP 
"Resource Constrained Project Scheduling Problem" 
instances. This work is based on new constraint 
programming techniques. And provided a complete 
system able to handle both dynamic and over-

constrained scheduling problems. (Chuanyu Zhao, 
2013) Proposed a novel and rigorous RDHS "real-time 
dynamic hoist Scheduling " methodology  , which takes 
into account uncertainties of new coming jobs and 
targets real-time scheduling optimality and applicability. 
(Bing-hai Zhou, 2013) Proposed a dynamic scheduling 
method of the photolithography process based on 
kohonen neural network. It determines the optimal 
combination of scheduling policies due to the special 
system status. (Gomes, 2014) Stated that dynamic 
events must be taken into account, since they may have 
a major impact on the schedule. They can change the 
system status and affect performance. Manufacturing 
systems require immediate response to these dynamic 
events. (Paolo Priore, 2015) Stated that dispatching 
rules are usually applied to schedule jobs in Flexible 
Manufacturing Systems (FMSs) dynamically. A 
scheduling approach that employs Support Vector 
Machines (SVMs) and case-based reasoning (CBR)
was proposed.(Yuxin Zhai 2017) Proposed adynamic 
scheduling approach to minimize the electricity cost of 
a flow shop with a grid-integrated wind turbine. (Chao 
Lu, 2017b)There was another work developed a high-
performance multi-objective predictive-reactive 
scheduling method for this MODWSP in order to narrow 
the gap between theoretical research and applicable 
practice.



 

Figure 3: Predictive-reactive scheduling 

IV. DYNAMIC SCHEDULING TECHNIQUES 

APPLIED t O MANUFACTURING SYSTEMS 

There are many techniques that used for 
solving dynamic scheduling in manufacturing systems 
and they vary. Here we discuss techniques like 
"Dispatching rules, Heuristics Techniques, Meta-
heuristics Techniques, Hyper-heuristics techniques, 
Artificial Intelligence Techniques, Multi-agent-based 
Dynamic Scheduling, The model of network topology 
technique, Constraint programming technique, Enviro-
nment driven, function-based technique".  

a) Dispatching rules 
Dispatching rules have played a significant role 

within dynamic contexts. (Ouelhadj D., 2009). From the 
literature reviewed, Dispatching heuristic was able to 
provide not only a good solution but also the best 
solutions for the system observed (Kaban, 2012). 
Dispatching rules are quick but lack robustness and 
adaptability(Atif Shahzad, 2016). (Edna Barbosa da 
Silva, 2014) In this work, a simulation model was 
proposed to evaluate sequencing solutions and present 
a simulation study of dispatching rules in stochastic job 
shop dynamic scheduling. (Atif Shahzad, 2016) Stated 
that dynamic scheduling uses priority dispatching rule 
(PDR) to prioritize jobs waiting for processing at a 
resource. 

b) Heuristics techniques 
Heuristics are problem specific schedule repair 

methods, which do not guarantee to find an optimal 
schedule, but have the ability to find reasonably good 
solutions in a short time. The most common schedule 
repair heuristics are: right-shift schedule repair, match-

up schedule repair, and partial schedule repair 
(Ouelhadj D., 2009). Dispatching rules are also 
heuristics that have played a significant role in 
completely reactive scheduling. And used in real-time to 
select the next job waiting for processing at a resource 
(Djamila Ouelhadj, 2008). (JurgenBranke 2016) In this 
work constitutes the first comprehensive review of 
hyper-heuristics for the automated design of production 
scheduling heuristics, providing a simple taxonomy and 
focusing on key design choices such as the learning 
method, attributes, representation and fitness 
evaluation. (Andrea Rossi, 2013). 

c) Meta-heuristics Techniques 
Meta-heuristics (tabu search, simulated 

annealing, the ant colony algorithm, bee colony and 
genetic algorithms) have been successfully used to 
solve production scheduling problems (Ouelhadj D., 
2009). Meta-heuristics have been widely used to solve 
static deterministic production scheduling. However, 
little research work has addressed the use of meta-
heuristics in dynamic scheduling (Djamila Ouelhadj, 
2008). Tabu search algorithm is the alternative 
approaches to the modern meta-heuristic optimization 
techniques (Balicki, 2007) . In this work a framework for 
multi objective bee colony optimization is proposed to 
schedule batch jobs to available resources where the 
number of jobs is greater than the number of resources 
(Sana Alyaseri, 2013) . Ant Colony Optimization (ACO) 
is a meta-heuristic technique and is used to find 
shortest path between source and destination (Sahana 
et al., 2014) . The ant colony algorithm is a new method 
to deal with the rescheduling problem of observing 
spacecraft (Li Yuqing 2014) . In this work, an efficient an 
improved ant colony optimization IACO is proposed for 
flexible job shop scheduling problem FJSP in order to 
minimize make span(Lei Wang, 2017) .There was 
another method proposed that makes use of the greedy 
randomized adaptive search procedure (GRASP) also 
used to solve dynamic scheduling problems (Adil 
Baykasoğlu, 2017).Also, a hybrid genetic and simulated 
annealing algorithms is developed because of the high 
potential of outcomes to be trapped in the local optima 
(Aidin Delgoshaei, 2016). As solution approaches, two 
meta-heuristic solution approaches based on the 
simulated annealing (SA) algorithm and the discrete 
particle swarm optimization (DPSO) are proposed to 
obtain a near optimal solution in a reasonable amount 
of time (Byung Jun Joo, 2015). There was another work 
proposed a GA for solving the agile job shop 
scheduling to minimize the make span(Li and Chen, 
2010). Also in this work, an implementation of a 
standard GA (SGA) to solve the task scheduling 
problem has been presented (Omara and Arafa, 2010). 
A genetic algorithm approach is applied to hypothetical 
numerical examples with the objective of minimizing the 
makespan in the work of (C. S.Wong, 2013). 
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d) Hyper-heuristics techniques
Hyper-heuristics are defined as “an automated 

methodology for selecting or generating heuristics to 
solve hard computational search problems” 
(Jurgen Branke, 2016). There was another work 
developed a two-stage hyper-heuristic to automatically
generate sets of dispatching rules for complex and 
dynamic scheduling problems. The approach combines 
a GP hyper-heuristic that evolves a composite rule from 
basic attributes (Christoph W. Pickardt, 2013). There  
was another study  used a hybrid heuristic model 
combining both Genetic Algorithm (GA) and Fuzzy 
Neural Network (FNN) (Alper Seker, 2013). This work 
introduces a two-phase hybrid solution method. The 
first phase relies on solving a series of linear 
programming problems to generate an initial solution. In 
the second phase, a variable neighborhood descent 
procedure is applied to improve the solution (Amina 
Lamghari, 2014). This work presented a Greedy 
Randomized Adaptive Search Procedure (GRASP)-
Mixed Integer Programming (MIP) hybrid algorithm for 
solving the precedence constrained production 
scheduling problem (PCPSP) of mine optimization 
(Angus Kenny, 2017). For solving a multi-objective 
optimization problem, a mathematical model formulated 
and a new hybrid multi-objective backtracking search 
optimization algorithm developed with an energy saving 
scenario (Chao Lu, 2017a). A dynamic and 
heterogeneous hybrid Architecture for Optimized and 
Reactive Control, ORCA, was introduced and applied    
to the manufacturing scheduling of an FMS
(Cyrille Pach, 2014).

e) Artificial intelligence techniques
A number of dynamic scheduling problems 

have adopted artificial intelligence techniques such as 
knowledge-based-systems, neural networks, case-
based reasoning, fuzzy logic, Petri nets, etc.
(Banu Çaliş 2013). (LIXIN TANG 2005)(T. Eguchi, 1999)
In this works a neural network approach was proposed 
to a dynamic job shop scheduling problems. There was 
another work present a survey of the use of an AI 
technique, in various manufacturing systems (Kumar, 
2014). To derive better dynamic scheduling systems, 
some researchers developed hybrid systems which 
combine various artificial intelligence techniques 
(Binodini Tripathy, 2015).

f) Multi-agent-based dynamic scheduling
To optimize performance, scheduling decisions 

are made centrally at the level of the supervisor, and 
then distributed to the manufacturing resource level for 
execution(Kaminsky, 2006). In the present work, Multi-
agents was proposed to find the near optimal solution 
for job shop scheduling problem using GA and VNS 
approach in parallel (Rakesh Kumar, 2016).

         

g) The model of network topology technique
A contribution made towards solving the 

problem of dynamic scheduling on parallel machines by 
introducing a model of network topology technique 
which captures some important aspects of the practical 
scheduling problem (Anja Feldmann 1994).

h) Constraint programming technique 
Recently, Constraint Programming (CP) attracts 

a high interest among both planning and scheduling 
community. It was based on the idea of describing the 
problem declaratively by means of constraints, logical 
relations among several unknowns (or variables), and,
consequently, finding a solution satisfying all the 
constraints (Barták, 1999).

i) Environment driven, function-based technique 
In this technique, an environment driven, 

function-based was developed for solving the dynamic 
single-machine scheduling problem. This technique can 
capture uncertainty and dynamic characteristics 
associated with the dynamic environment. 
(Arezoo Atighehchian 2013). There is another work 
proposes an innovative approach to study the dynamic 
scheduling problem in FMS, taking the objectives of 
minimum or maximum energy consumption into 
account (Liping Zhang, 2013).

j) Comparison of dynamic scheduling techniques
In order to ascertain the value of the various 

solution techniques, there has been some published 
work comparing some of these techniques. Heuristics 
have been widely used to react to the presence of real-
time events because of their simplicity, but they may 
become stuck in poor local optima. To overcome this, 
meta heuristics such as tabu search, simulated 
annealing, and genetic algorithms have been proposed. 
Several comparative studies have been provided in the 
literature to compare the performance of tabu search, 
genetic algorithms, and simulated annealing. Unlike 
simulated annealing and tabu search based on 
manipulating one feasible solution, genetic algorithms 
manipulate a population of feasible solutions. Genetic 
algorithms were found not efficient to find a near-
optimal solution in a reasonable time compared to tabu 
search and simulated annealing which operate on a 
single configuration and not on an entire population. 
Knowledge-based systems possess the potential for 
automating human expert reasoning and heuristic 
knowledge to run production scheduling systems. In 
terms of effectiveness of the decision-making capability, 
knowledge-based systems are limited by the quality 
and integrity of the specific domain knowledge. Fuzzy 
logic has not yet been explored to its fullest potential. 
Neural networks cannot guarantee to provide optimal 
decisions, but their learning capability makes them 



to have a lot of promise. In addition, in developing 
practical integrated dynamic scheduling systems, it is 
necessary to combine together different techniques 
such as operational research and artificial intelligence to 
endow the scheduling system with the required flexibility 
and robustness

 

(Djamila Ouelhadj, 2008). In order to 
give recommendations on when it is beneficial to use a 
hyper-heuristic and how to design it, extensive and 
meaningful performance comparisons of evolved 
heuristics with more sophisticated (global) solution 
algorithms as well as between different hyper-heuristics 
are needed. So far, such comparisons have been rather 
limited hyper-heuristic approaches have strengths 
compared to global optimization approaches in 
particular in

 

dynamic and stochastic environments 
where a quick reaction is important. They also become 
more competitive as the problem size (and thus the 
search space for the global optimizer) increases. One 
reason for the limited number of comparisons may be 
that hyper-heuristics possess several properties that 
make a fair comparison particularly difficult. For 
example, not only are the hyper-heuristics stochastic 
algorithms with many parameters to tune, but also is the 
evaluation function often a stochastic simulation, 
resulting in stochastic fitness values. Also, the running 
time for the simulations can be quite substantial, and,

 

to 
make things worse, the running time to evaluate a 
particular dispatching rule strongly depends on the rule 
itself, as the time to calculate the priority value and the 
numbers of jobs in the system depend on the rule itself. 
This implies that a comparison of hyper heuristics 
based on the same number of function evaluations has 
limited validity (Jurgen Branke, 2016). For The network 
topology technique there was a question which remain 
open were, how can the model be extended to capture 
the practical scheduling even better? and if the 
competitive ratio is the right performance 
measurement? also of interest is whether randomization 
can help to improve the performance of the scheduling 
algorithm (Anja Feldmann 1994). About constraints 
programming despite of studying the proposed 
framework using the complex process environment 
background we believe that the results are applicable in 
general to other (non-

 

production) problem areas where 
mixed planning and scheduling capabilities are 
desirable (Barták, 1999). The efficiency of the function-
based approach is evaluated against the most 
commonly used dispatching rules. Moreover, the 
proposed approach is compared with an agent-based 
approach, which employs the Q-learning algorithm to 
develop a decision-making policy. Experimental results 
show that the proposed approach is an effective 
method for dynamic single-machine scheduling (Arezoo 
Atighehchian 2013).

 

  

A dynamic scheduling is not dissection making 
problem but it is optimization problem. And it concerns 
with resources available, the jobs that should be done 
and the perfect time to do jobs. In manufacturing 
operations there should be an optimum utilization 
between resources and jobs in minimum time to gain 
markets. I think that a dynamic scheduling is a good 
way to solve any problem of scheduling in the presence 
of real-time events for allocating jobs to resources in 
manufacturing. From the above we can define dynamic 
scheduling like this "A dynamic scheduling is the 
optimum Utilization between resources and jobs in real 
time events ".  Predictive-reactive scheduling is the most 
common approach in doing dynamic scheduling. It 
searches in a larger solution space, generate high 
quality schedules, and can generate better system 
performance to increase productivity and minimize 
operating costs compared with on-line scheduling and 
predictive scheduling. In computational complexity 
sense optimization problems belongs to the class of 
NP-hard problems. Not all NP-hard problems are 
equally hard from a practical perspective. We have seen 
that some NP-hard problems can be solved 
pseudopolynomially using dynamic programming or 
“hill climbing”, known as local (or neighborhood) search 
Dynamic scheduling has been solved using many 
techniques. It is necessary to combine together different 
techniques such as operational research and artificial 
intelligence to endow the scheduling system with the 
required flexibility and robustness for example 
integrating neural networks, simulation, and expert 
systems or a hybrid approach. I think that dynamic 
scheduling has a main role in developing the fourth 
industrial revolution. 

   

 

A Dynamic scheduling is the optimum 
Utilization between resources and jobs in real time 
events. The scheduling problems were classified based 
on the nature of the shop configuration into five classes. 
Dynamic scheduling divided into four categories. 
Predictive-reactive scheduling is the most common 
approach. In computational complexity sense 
optimization problems belongs to the class of a NP-
hard problems, practical experience shows that some 
computational problems are easier to solve than others. 
To solve dynamic scheduling, it is necessary to 
combine together different techniques such as 
operational research and artificial intelligence. Further 
work in this topic is expected to investigate the role of 
dynamic scheduling in manufacturing systems in 
Industry 4.0"the fourth industrial revolution", and as a 
core element of systems engineering, also doing 
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ideally suited for rapidly changing systems. Integrating 
neural networks, simulation, and expert systems seems 
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V. RESULTS aND DISCUSSION

VI. CONCLUSION aND t HE RESEARCH 

OPPORTUNITIES
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dynamic scheduling as a program in the embedded 
systems in manufacturing environment
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